Skip to main content
Log in

Dynamics of binary Bose–Einstein condensate via Ehrenfest like equations: appearance of almost shape invariant states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We derive Ehrenfest like equations for the coupled Gross Pitaevskii equations (CGPE) which describe the dynamics of the binary Bose–Einstein condensate (BBEC) both in the free particle regime and in the regime where condensate is well trapped. Instead of traditional variational technique, we propose a new Ehrenfest based approach to explore so far unrevealed dynamics for CGPE and illustrate the possibility of almost shape invariant states in both the regimes. In the absence of a trapping potential, when all the interactions present in the system are attractive, it is possible for an initially mixed Gaussian state to propagate with almost no change in width if the proper initial condition is satisfied. Even for repulsive intra-atomic and attractive inter-atomic interaction (g αβ ) one can tune |g αβ | such that the width of the propagating wave packet remains bounded within almost about 10%. We also discuss the dynamics of the initially phase separated condensate and have shown the breakdown of the Gaussian nature of the wave packets due to collisions. However, when the BEC is trapped in simple harmonic oscillator (SHO) potential, for g αβ > 0, it is possible for an initially overlapping state to retain its initial shape if g αβ is less than a critical value (g αβ c). If g αβ exceeds g αβ c, an overlapping state can become phase separated while keeping its shape unchanged.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Dalvano, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  2. L. Pitaevskii, S. Stringari, Bose–Einstein condensation (Oxford Science Publication, Clarendon Press, Oxford, 2003)

  3. C.J. Pethick, H. Smith, Bose–Einstein condensation in dilute gases (Cambridge University Press, Cambridge, UK, 2002)

  4. Y. Eto, M. Takahashi, M. Kunimi, H. Saito, T. Hirano, New J. Phys. 18, 073029 (2016)

    Article  ADS  Google Scholar 

  5. R. Navarro, R. Carretero-González, P.G. Kevrekidis, Phys. Rev. A 80, 023613 (2009)

    Article  ADS  Google Scholar 

  6. V.M. Pérez-García, H. Michinel, J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. A 56, 1424 (1997)

    Article  ADS  Google Scholar 

  7. L.E. Young-S, L. Salasnich, S.K. Adhikari, Phys. Rev. A 82, 05360 (2010)

    Article  Google Scholar 

  8. M. Egorov, Coherence and collective oscillations of a two-component Bose–Einstein condensate, PhD thesis, Swinburne University of Technology, Melbourne, Australia, 2012

  9. D.S. Petrov, Bose–Einstein condensation in low-dimensional trapped gases, PhD thesis, Van der Waals-Zeeman Institute (WZI), Amsterdam, 2003

  10. S. Pal, J.K. Bhattacharjee, Int. J. Mod. Phys. B 26, 1550216 (2015)

    Article  Google Scholar 

  11. H.E. Nistazakis, Z. Rapti, D.J. Frantzeskakis, P.G. Kevrekidis, P. Sodano, A. Trombettoni, Phys. Rev. A 78, 023635 (2008)

    Article  ADS  Google Scholar 

  12. B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008)

    Article  ADS  Google Scholar 

  13. K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, Phys. Rev. A 80, 063611 (2009)

    Article  ADS  Google Scholar 

  14. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, V. Akkerman, M. Marklund, Phys. Rev. A 83, 043623 (2011)

    Article  ADS  Google Scholar 

  15. A. Roy, S. Gautam, D. Angom, Phys. Rev. A 89, 013617 (2014)

    Article  ADS  Google Scholar 

  16. D.J. McCarron, H.W. Cho, D.L. Jenkin, M.P. Köppinger, S.L. Cornish, Phys. Rev. A (R) 84, 011603 (2011)

    Article  ADS  Google Scholar 

  17. M. Trippenbach, K. Góral, K. Rzażewski, B. Malomed, Y.B. Band, J. Phys. B 33, 4017 (2000)

    Article  ADS  Google Scholar 

  18. R.W. Pattinson, Two component Bose–Einstein condensates: equilibria and dynamics at zero temperature and beyond, PhD thesis, Newcastle University, UK, 2014

  19. S.V. Manakov, Sov. Phys. JETP 38, 248 (1974)

    ADS  Google Scholar 

  20. D.J. Kaup, B.A. Malomed, Phys. Rev. A 48, 599 (1993)

    Article  ADS  Google Scholar 

  21. R. Radhakrishnan, M. Lakshmanan, J. Phys. A 28, 2683 (1999)

    Article  ADS  Google Scholar 

  22. V.M. Pérez-García, J.B. Beitia, Phys. Rev. A 72, 033620 (2005)

    Article  ADS  Google Scholar 

  23. S.K. Adhikari, Phys. Lett. A 346, 179 (2005)

    Article  ADS  Google Scholar 

  24. M. Javidi, A. Golbabai, J. Math. Anal. Appl. 333, 1119 (2007)

    Article  MathSciNet  Google Scholar 

  25. W. Bao, S. Jin, P.A. Markowich, J. Comput. Phys. 175, 487 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Muruganandam, S.K Adhikari, J. Phys. B 36, 2501 (2003)

    Article  ADS  Google Scholar 

  27. P. Muruganandam, S.K Adhikari, Comput. Phys. Commun. 180, 1888 (2009)

    Article  ADS  Google Scholar 

  28. D. Vudragović, I. Vidanović, A. Balaz, P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 183, 2021 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukla Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Bhattacharjee, J.K. Dynamics of binary Bose–Einstein condensate via Ehrenfest like equations: appearance of almost shape invariant states. Eur. Phys. J. D 71, 291 (2017). https://doi.org/10.1140/epjd/e2017-80012-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80012-3

Keywords

Navigation