Skip to main content
Log in

Angular and polarization dependence of all optical diode in one-dimensional photonic crystal

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of the incident angle on all-optical diode (AOD) efficiency in a one-dimensional photonic crystal structure (1DPC) for TE and TM polarizations was studied. An asymmetric hybrid Fabry Perot resonator type 1DPC structure composed of linear and nonlinear materials was considered in this communication. The nonlinear transmission curves around the defect mode resonant frequency inside the photonic band gap for both TE and TM polarizations at different incident angles, from left to right (L-R) and right to left (R-L) incidences, are illustrated. Results showed that with increasing the incident angle, AOD performance efficiency increases only for TM polarization. The AOD efficiency increased to 80% for an incident angle of 60 degrees because of the dynamical shifting of the defect mode peak frequency caused by the intensity-dependency of the nonlinear layer refractive index along the z-axes. For TE polarization, the z-component of the electric field remained constant for all incident angles. The results of this study can be important in optical data communications and information analysis in all-optical integrated circuits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 67, 2295 (1991)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, D. Perreault, Opt. Lett. 29, 863 (2004)

    Article  ADS  Google Scholar 

  4. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, K. Wada, J. Appl. Phys. 97, 033529 (2005)

    Article  ADS  Google Scholar 

  5. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, T. Nagatsuma, Nat. Photon. 8, 657 (2014)

    Article  ADS  Google Scholar 

  6. S.A. El-Naggar, Eur. Phys. J. D 67, 54 (2013)

    Article  ADS  Google Scholar 

  7. T.F. Krauss, R.M. De La Rue, Prog. Quant. Elec. 23, 51 (1999)

    Article  ADS  Google Scholar 

  8. S. Arishmar Cerqueira Jr., Rep. Prog. Phys. 73, 024401 (2010)

    Article  ADS  Google Scholar 

  9. M. Soljačič, C. Luo, J.D. Joannopoulos, S. Fan, Opt. Lett. 28, 637 (2003)

    Article  ADS  Google Scholar 

  10. S. Mingaleev, Y.S. Kivshar, J. Opt. Soc. Am. B 19, 2241 (2002)

    Article  ADS  Google Scholar 

  11. W.Y. Chiu, Y.S. Wu, Y.J. Chan, T.D. Wang, C.H. Hou, H.T. Chien, C.C. Chen, Opt. Commun. 28, 4749 (2011)

    Article  ADS  Google Scholar 

  12. H. Inouyea, Y. Kanemitsu, Appl. Phys. Lett. 82, 1155 (2003)

    Article  ADS  Google Scholar 

  13. J. He, M. Cada, IEEE J. Quantum Electron. 27, 1182 (1991)

    Article  ADS  Google Scholar 

  14. P. Tran, Opt. Lett. 21, 1138 (1996)

    Article  ADS  Google Scholar 

  15. R. Wang, J. Dong, D.Y. Xing, Phys. Rev. E 55, 6301 (1997)

    Article  ADS  Google Scholar 

  16. W. Wei-jiang, I.Z. Jin-yun, X. Wan-neng, Optoelectron. Lett. 2, 0237 (2006)

    Article  ADS  Google Scholar 

  17. M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer, J. Appl. Phys. 76, 2023 (1994)

    Article  ADS  Google Scholar 

  18. M. Scalora, J.P. Dowling, C.W. Bowden, M.J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994)

    Article  ADS  Google Scholar 

  19. M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden, Appl. Phys. Lett. 66, 2324 (1995)

    Article  ADS  Google Scholar 

  20. M.W. Feise, I.V. Shadrivov, Yu.S. Kivshar, Phys. Rev. E 71, 037602 (2005)

    Article  ADS  Google Scholar 

  21. F. Biancalana, J. Appl. Phys. 104, 093113 (2008)

    Article  ADS  Google Scholar 

  22. V. Grigoriev, F. Biancalana, New J. Phys. 12, 053041 (2010)

    Article  ADS  Google Scholar 

  23. J. Hwang, M.H. Song, B. Park, S. Nishimura, T. Toyooka, J.W. Wu, Y. Takanishi, K. Ishikawa, H. Takezoe, Nat. Mater. 4, 383 (2005)

    Article  ADS  Google Scholar 

  24. J.Y. Chen, L.W. Chen, Opt. Express 14, 10733 (2006)

    Article  ADS  Google Scholar 

  25. S.V. Zhukovsky, A.G. Smirnov, Phys. Rev. A 83, 023818 (2011)

    Article  ADS  Google Scholar 

  26. S.V. Zhukovsky, Phys. Rev. A 81, 053808 (2010)

    Article  ADS  Google Scholar 

  27. L. Jin, J. Zhou, M. Yang, C. Xue, M. He, Opt. Eng. 50, 030503 (2011)

    Article  ADS  Google Scholar 

  28. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic press, San Diego, 2008)

  29. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 2005)

  30. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Jamshidi-Ghaleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi-Ghaleh, K., Safari, Z. & Moslemi, F. Angular and polarization dependence of all optical diode in one-dimensional photonic crystal. Eur. Phys. J. D 69, 95 (2015). https://doi.org/10.1140/epjd/e2015-50822-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50822-4

Keywords

Navigation