Skip to main content
Log in

Soliton collisions and integrable aspects of the fifth-order Korteweg-de Vries equation for shallow water with surface tension

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The fifth-order Korteweg-de Vries (KdV) equation works as a model for the shallow water waves with surface tension. Through symbolic computation, binary Bell-polynomial approach and auxiliary independent variable, the bilinear forms, N-soliton solutions, two different Bell-polynomial-type Bäcklund transformations, Lax pair and infinite conservation laws are obtained. Characteristic-line method is applied to discuss the effects of linear wave speed c as well as length scales τ and γ on the soliton amplitudes and velocities. Increase of τ, c and γ can lead to the increase of the soliton velocity. Soliton amplitude increases with the increase of τ. The larger-amplitude soliton is seen to move faster and then to overtake the smaller one. After the collision, the solitons keep their original shapes and velocities invariant except for the phase shift. Graphic analysis on the two and three-soliton solutions indicates that the overtaking collisions between/among the solitons are all elastic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Dullin, G.A. Gottwald, D.D. Holm, Fluid Dyn. Res. 33, 73 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. H.R. Dullin, G.A. Gottwald, D.D. Holm, Physica D 190, 1 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M. Kunze, G. Schneider, Lett. Math. Phys. 72, 17 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Y. Kodama, Phys. Lett. A 107, 245 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Y. Kodama, Phys. Lett. A 112, 193 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Kodama, Phys. Lett. A 123, 276 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Alber, R. Camassa, D.D. Holm, J.E. Marsden, Lett. Math. Phys. 32, 137 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. M. Alber, R. Camassa, V.N. Fedorov, D.D. Holm, J.E. Marsden, Phys. Lett. A 264, 171 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. M. Alber, R. Camassa, V.N. Fedorov, D.D. Holm, J.E. Marsden, Commun. Math. Phys. 221, 197 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. R. Camassa, D.D. Holm, Phys. Rev. Lett. 71, 1661 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. Busuioc, C.R. Acad. Sci. Paris Ser. I 328, 1241 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. H. Dai, Acta Mech. 127, 193 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Y.J. Shen, Y.T. Gao, X. Yu, G.Q. Meng, Y. Qin, Appl. Math. Comput. 227, 502 (2014)

    Article  MathSciNet  Google Scholar 

  14. D.W. Zuo, Y.T. Gao, G.Q. Meng, Y.J. Shen, X. Yu, Nonlinear Dyn. 75, 701 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Z.Y. Sun, Y.T. Gao, Y. Liu, X. Yu, Phys. Rev. E 84, 026606 (2011)

    Article  ADS  Google Scholar 

  16. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1992)

  17. J.J. Nimmo, Phys. Lett. A 99, 279 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Hirota, The Direct Method in Soliton Theory (Springer, Berlin, 1980)

  19. H.Q. Zhang, B. Tian, Eur. Phys. J. B 72, 233 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Y.S. Li, W.X. Ma, Phys. Lett. A 275, 60 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. F. Lambert, S. Leble, J. Springael, Glasgow Math. J. 43A, 53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Gilson, F. Lambert, J. Nimmo, R. Willox, Proc. R. Soc. London A 452, 223 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. F. Lambert, J. Springael, Acta Appl. Math. 102, 147 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Lambert, I. Loris, J. Springael, Inv. Prob. 17, 1067 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. E.G. Fan, Phys. Lett. A 375, 493 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Y.J. Shen, Y.T. Gao, D.W. Zuo, Y.H. Sun, Y.J. Feng, L. Xue, Phys. Rev. E 89, 062915 (2014)

    Article  ADS  Google Scholar 

  27. D.W. Zuo, Y.T. Gao, Y.H. Sun, Y.J. Feng, L. Xue, Z. Naturforsch. A 69, 521 (2014)

    Article  Google Scholar 

  28. Z.Y. Sun, Y.T. Gao, X. Yu, Y. Liu, Phys. Lett. A 377, 3283 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Z.Y. Sun, Y.T. Gao, X. Yu, Y. Liu, Europhys. Lett. 93, 40004 (2011)

    Article  ADS  Google Scholar 

  30. B. Tian, Y.T. Gao, Phys. Plasmas 12, 070703 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Tian, Y.T. Gao, Eur. Phys. J. D 33, 59 (2005)

    Article  ADS  Google Scholar 

  32. Y.T. Gao, B. Tian, Phys. Lett. A 361, 523 (2007)

    Article  ADS  MATH  Google Scholar 

  33. Y.T. Gao, B. Tian, Europhys. Lett. 77, 15001 (2007)

    Article  ADS  Google Scholar 

  34. B. Tian, Y.T. Gao, Phys. Plasmas 12, 054701 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. B. Tian, Y.T. Gao, Phys. Lett. A 340, 449 (2005)

    Article  ADS  MATH  Google Scholar 

  36. B. Tian, Y.T. Gao, Phys. Lett. A 342, 228 (2005)

    Article  ADS  MATH  Google Scholar 

  37. B. Tian, Y.T. Gao, Phys. Lett. A 359, 241 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WR., Shan, WR., Jiang, Y. et al. Soliton collisions and integrable aspects of the fifth-order Korteweg-de Vries equation for shallow water with surface tension. Eur. Phys. J. D 69, 62 (2015). https://doi.org/10.1140/epjd/e2014-50687-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50687-y

Keywords

Navigation