Skip to main content
Log in

Applications of artificial neural networks to proton-impact ionization double differential cross sections

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We use artificial neural networks (ANNs) to study proton impact single ionization double differential cross sections of atoms and molecules. While widely used in other fields, to our knowledge, this is the first time that an ANN has been used to study differential cross sections for atomic collisions. ANNs are trained to learn patterns in data and make predictions for cases where no data exists. We test the validity of the ANN’s predictions by comparing them to known measurements and find that the ANN does an excellent job of predicting the known data. We then use the ANN to make predictions of cross sections where no data currently exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Soman, J.A. Darsey, D.W. Noid, B.G. Sumpter, Chim. Oggi 13, 43 (1995)

    Google Scholar 

  2. J.E. Dayhoff, J.M. DeLeo, Cancer 91, 1615 (2001)

    Article  Google Scholar 

  3. K. Hsu, H.V. Gupta, S. Sorooshian, Water Resour. Res. 31, 2517 (1995)

    Article  ADS  Google Scholar 

  4. W.L. Morgan, IEEE Trans. Plasma Sci. 19, 250 (1991)

    Article  ADS  Google Scholar 

  5. R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)

    Article  ADS  Google Scholar 

  6. R.E. Olson, Phys. Rev. A 18, 2464 (1978)

    Article  ADS  Google Scholar 

  7. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Prentice Hall, New York, 2003)

  8. L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967)

  9. L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (Prentice Hall, Englewood Cliffs, 1994)

  10. P.T. Baffes, S. Bayer, B. Dulock, L. Jensen, C. Ortiz, G. Riley, R.O. Shelton, T.A. Phillips, NETS Program, Version 4.0, Johnson Space Center Report No. MSC-21485, 1994

  11. T.L. Criswell, L.H. Toburen, M.E. Rudd, Phys. Rev. A 16, 508 (1977)

    Article  ADS  Google Scholar 

  12. J.B. Crooks, M.E. Rudd, Phys. Rev. A 3, 1628 (1971)

    Article  ADS  Google Scholar 

  13. Private Communication to the authors of D.H. Madison, S.T. Manson, Phys. Rev. A 20, 825 (1979)

    Google Scholar 

  14. L. Sarkadi, J. Bossler, R. Hippler, H.O. Lutz, J. Phys. B 16, 71 (1983)

    Article  ADS  Google Scholar 

  15. Wen-Qin Cheng, M.E. Rudd, Ying-Yuan Hsu, Phys. Rev. A 39, 2359 (1989)

    Article  ADS  Google Scholar 

  16. D.A. Biava et al., J. Phys. B: At. Mol. Opt. Phys. 35, 293 (2002)

    Article  ADS  Google Scholar 

  17. I. Bray, D.V. Fursa, Phys. Rev. A 54, 2991 (1996)

    Article  ADS  Google Scholar 

  18. A. Duguet et al., J. Phys. B: At. Mol. Opt. Phys. 20, 6145 (1987)

    Article  ADS  Google Scholar 

  19. S. Jones, D.H. Madison, Phys. Rev. Lett. 81, 2886 (1998)

    Article  ADS  Google Scholar 

  20. I.E. McCarthy, E. Weigold, Rep. Prog. Phys. 54, 789 (1991)

    Article  ADS  Google Scholar 

  21. H. Ray, A.C. Roy, Phys. Rev. A 46, 5714 (1992)

    Article  ADS  Google Scholar 

  22. X. Ren et al., Phys. Rev. A 82, 032712 (2010)

    Article  ADS  Google Scholar 

  23. A.T. Stelbovics, Phys. Rev. A 71, 052716 (2005)

    Article  ADS  Google Scholar 

  24. M. Stevenson et al., J. Phys. B: At. Mol. Opt. Phys. 38, 433 (2005)

    Article  ADS  Google Scholar 

  25. M.A. Stevenson et al., Phys. Rev. A 79, 012709 (2009)

    Article  ADS  Google Scholar 

  26. H.R.J. Walters, C.T. Whelan, Phys. Rev. A 85, 062701 (2012)

    Article  ADS  Google Scholar 

  27. I. Bray, Phys. Rev. Lett. 89, 273201 (2002)

    Article  ADS  Google Scholar 

  28. C.R. Garibotti, J.E. Miraglia, Phys. Rev. A 21, 572 (1980)

    Article  ADS  Google Scholar 

  29. J.B. Crooks, M.E. Rudd, Phys. Rev. A 3, 1628 (1971)

    Article  ADS  Google Scholar 

  30. L.H. Toburen, Phys. Rev. A 3, 216 (1971)

    Article  ADS  Google Scholar 

  31. W.E. Wilson, L.H. Toburen, Phys. Rev. A 11, 1303 (1975)

    Article  ADS  Google Scholar 

  32. L.H. Toburen, W.E. Wilson, Phys. Rev. A 5, 250 (1972)

    ADS  Google Scholar 

  33. C. Catlett et al., TeraGrid: Analysis of Organization, System Architecture, and Middleware Enabling New Types of Applications (HPC and Grids in Action, Ed. Luco Grandinetti, IOS Press ‘Advances in Parallel Computing’ series, Amsterdam, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, A., Darsey, J. Applications of artificial neural networks to proton-impact ionization double differential cross sections. Eur. Phys. J. D 67, 130 (2013). https://doi.org/10.1140/epjd/e2013-40111-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40111-9

Keywords

Navigation