Skip to main content
Log in

High-order Bessel non-vortex beam of fractional type α: II. Vector wave analysis for standing and quasi-standing laser wave tweezers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Based on the vector Maxwell’s equations and Lorenz’ gauge condition, full vector-wave derivations for the electric and magnetic fields components of a high-order Bessel non-vortex beam of fractional type α (HOBNVB-Fα) are presented. The field corresponds to the most generalized case of quasi-standing waves that reduce to perfect (i.e. equi-amplitude) standing waves or progressive waves with appropriate choice of the quasi-standing wave coefficient Υ. Particular emphasis is given on the polarization states of the vector potentials used to derive the field’s components and the transition from the progressive to perfect standing wave behavior. The results are of particular importance in the study of the optical/electromagnetic wave scattering, radiation force and torque in dual-beam optical laser-wave tweezers operating with this fractional type of non-diffracting non-vortex beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  2. E. Fällman, O. Axner, Appl. Opt. 36, 2107 (1997)

    Article  ADS  Google Scholar 

  3. W. Grange, S. Husale, H.-J. Guntherodt, M. Hegner, Rev. Sci. Instrum. 73, 2308 (2002)

    Article  ADS  Google Scholar 

  4. Y. Liu, M. Yu, Opt. Express 17, 21680 (2009)

    Article  ADS  Google Scholar 

  5. T. Li, S. Kheifets, M.G. Raizen, Nat. Phys. 7, 527 (2011)

    Article  Google Scholar 

  6. J. Sung, S. Sivaramakrishnan, A.R. Dunn, J.A. Spudich, in Methods in Enzymology, edited by G.W. Nils (Academic Press, 2010), Vol. 475, p. 321

  7. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  8. F.M. Fazal, S.M. Block, Nat. Photon. 5, 318 (2011)

    Article  ADS  Google Scholar 

  9. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Nature 419, 145 (2002)

    Article  ADS  Google Scholar 

  10. X. Chu, Eur. Phys. J. D 66, 259 (2012)

    Article  ADS  Google Scholar 

  11. V.G. Shvedov, A.S. Desyatnikov, A.V. Rode, W. Krolikowski, Y.S. Kivshar, Opt. Express 17, 5743 (2009)

    Article  ADS  Google Scholar 

  12. V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010)

    Article  ADS  Google Scholar 

  13. J.C. Gutierrez-Vega, C. Lopez-Mariscal, J. Opt. Appl. Opt. 10, 015009 (2008)

    Article  ADS  Google Scholar 

  14. C. Lopez-Mariscal, D. Burnham, D. Rudd, D. McGloin, J.C. Gutierrez-Vega, Opt. Express 16, 11411 (2008)

    Article  ADS  Google Scholar 

  15. F.G. Mitri, IEEE Trans. Ultrason. Ferr. 57, 395 (2010)

    Article  Google Scholar 

  16. F.G. Mitri, Opt. Lett. 36, 606 (2011)

    Article  ADS  Google Scholar 

  17. F.G. Mitri, Opt. Lett. 38, 615 (2013)

    Article  ADS  Google Scholar 

  18. F.G. Mitri, Optik – Int. J. Light Electron Opt. (2013), http://dx.doi.org/10.1016/j.ijleo.2012.04.024

  19. S.H. Tao, W.M. Lee, X.C. Yuan, Opt. Lett. 28, 1867 (2003)

    Article  ADS  Google Scholar 

  20. S.H. Tao, W.M. Lee, X.C. Yuan, Appl. Opt. 43, 122 (2004)

    Article  ADS  Google Scholar 

  21. S.H. Tao, X.C. Yuan, J. Opt. Soc. Am. A 21, 1192 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  22. F.G. Mitri, Phys. Rev. A 85, 025801 (2012)

    Article  ADS  Google Scholar 

  23. J.D. Jackson, Classical electrodynamics (Wiley, 1999), p. 240

  24. J.P. Barton, D.R. Alexander, S.A. Schaub, J. Appl. Phys. 64, 1632 (1988)

    Article  ADS  Google Scholar 

  25. F.G. Mitri, IEEE Trans. Antennas Propag. 59, 4375 (2011)

    Article  ADS  Google Scholar 

  26. F.G. Mitri, Opt. Lett. 36, 766 (2011)

    Article  ADS  Google Scholar 

  27. G. Gouesbet, G. Grehan, Generalized Lorenz-Mie Theories, 1st edn. (Springer, 2011)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitri, F.G. High-order Bessel non-vortex beam of fractional type α: II. Vector wave analysis for standing and quasi-standing laser wave tweezers. Eur. Phys. J. D 67, 135 (2013). https://doi.org/10.1140/epjd/e2013-40035-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40035-4

Keywords

Navigation