Skip to main content
Log in

Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We demonstrate that a kind of highly excited state of strongly attractive Hubbard model, named of Fermi super-Tonks-Girardeau state, can be realized in the spin-1/2 Fermi optical lattice system by a sudden switch of interaction from the strongly repulsive regime to the strongly attractive regime. In contrast to the ground state of the attractive Hubbard model, such a state is the lowest scattering state with no pairing between attractive fermions. With the aid of Bethe-ansatz method, we calculate energies of both the Fermi Tonks-Girardeau gas and the Fermi super-Tonks-Girardeau state of spin-1/2 ultracold fermions and show that both energies approach to the same limit as the strength of the interaction goes to infinity. By exactly solving the quench dynamics of the Hubbard model, we demonstrate that the Fermi super-Tonks-Girardeau state can be transferred from the initial repulsive ground state very efficiently. This allows the experimental study of properties of Fermi super-Tonks-Girardeau gas in optical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  2. B. Paredes et al., Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  3. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  4. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 95, 190407 (2005)

    Article  ADS  Google Scholar 

  5. E. Haller et al., Science 325, 1224 (2009)

    Article  ADS  Google Scholar 

  6. J.B. McGuire, J. Math. Phys. 5, 622 (1964)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. M.T. Batchelor, M. Bortz, X.W. Guan, N. Oelkers, J. Stat. Mech.: Theory Exp., L10001 (2005)

  8. E. Tempfli, S. Zöllner, P. Schmelcher, New J. Phys. 10, 103021 (2008)

    Article  ADS  Google Scholar 

  9. S. Chen, L. Guan, X. Yin, Y. Hao, X.-W. Guan, Phys. Rev. A 81, 031609(R) (2010)

    ADS  Google Scholar 

  10. M.D. Girardeau, G.E. Astrakhachik, Phys. Rev. A 81, 061601(R) (2010)

    ADS  Google Scholar 

  11. M. Valiente, Europhys. Lett. 98, 10010 (2012)

    Article  ADS  Google Scholar 

  12. L. Wang, Y. Hao, S. Chen, Phys. Rev. A 81, 063637 (2010)

    Article  ADS  Google Scholar 

  13. M.D. Girardeau, Phys. Rev. A 82, 011607(R) (2010)

    ADS  Google Scholar 

  14. L. Guan, S. Chen, Phys. Rev. Lett. 105, 175301 (2010)

    Article  ADS  Google Scholar 

  15. S. Chen, X.-W. Guan, X. Yin, L. Guan, M.T. Batchelor, Phys. Rev. A 81, 031608(R) (2010)

    ADS  Google Scholar 

  16. X. Yin, X.W. Guan, M.T. Batchelor, S. Chen, Phys. Rev. A 83, 013602 (2011)

    Article  ADS  Google Scholar 

  17. M.D. Girardeau, Phys. Rev. A 83, 011601(R) (2011)

    Article  ADS  Google Scholar 

  18. D. Muth, M. Fleischhauer, Phys. Rev. Lett. 105, 150403 (2010)

    Article  ADS  Google Scholar 

  19. M. Kormos, G. Mussardo, A. Trombettoni, Phys. Rev. A 83, 013617 (2011)

    Article  ADS  Google Scholar 

  20. A. Rosch, D. Rasch, B. Binz, M. Vojta, Phys. Rev. Lett. 101, 265301 (2008)

    Article  ADS  Google Scholar 

  21. A. Kantian, A.J. Daley, P. Zoller, Phys. Rev. Lett. 104, 240406 (2010)

    Article  ADS  Google Scholar 

  22. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1443 (1968)

    Article  ADS  Google Scholar 

  23. C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. M. Gaudin, Phys. Lett. A 24, 55 (1967)

    Article  ADS  Google Scholar 

  25. M. Ogata, H. Shiba, Phys. Rev. B 41, 2326 (1990)

    Article  ADS  Google Scholar 

  26. F. Woynarovich, K. Penc, Z. Phys. B 85, 269 (1991)

    Article  ADS  Google Scholar 

  27. C.N. Yang, Phys. Rev. Lett. 63, 2144 (1989)

    Article  ADS  Google Scholar 

  28. L. Guan, S. Chen, Y. Wang, Z.Q. Ma, Phys. Rev. Lett. 102, 160402 (2009)

    Article  ADS  Google Scholar 

  29. M.D. Girardeau, A. Minguizzi, Phys. Rev. Lett. 99, 230402 (2007)

    Article  ADS  Google Scholar 

  30. F. Deuretzbacher et al., Phys. Rev. Lett. 100, 160405 (2008)

    Article  ADS  Google Scholar 

  31. E.H. Lieb, D. Mattis, Phys. Rev. 125, 164 (1962)

    Article  MATH  ADS  Google Scholar 

  32. L.-M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  33. A.B. Kuklov, B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xu, Z.H. & Chen, S. Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice. Eur. Phys. J. D 66, 265 (2012). https://doi.org/10.1140/epjd/e2012-30163-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30163-8

Keywords

Navigation