Skip to main content
Log in

DFT study on size-dependent geometries, stabilities, and electronic properties of AunM2 (M = Si, P; n = 1–8) clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ab initio method based on density functional theory at the PW91PW91 level has been employed to systematically study the structures, stabilities, electronic, and magnetic properties of gold clusters with or without silicon/phosphorus doping. The optimized geometries show that the most stable isomers for Au n Si2 and Au n P2 (n = 1–8) clusters prefer a three-dimensional structure when n = 2 and n = 3 upwards, respectively, and they can be viewed as grown from the already observed Aun−1M2 (M = Si, P). The relative stabilities of calculated Au n M2 (M = Si, P) clusters have been analyzed through the atomic average binding energy, fragmentation energy, second-order difference of energy, and HOMO-LUMO gap. A pronounced odd-even alternative phenomenon indicates that the clusters with even-numbered valence electrons possess a higher stability than their neighboring ones. For both systems, natural population analysis reveals that electronic properties of dopant atoms in the corresponding configuration are mainly related to s and p states. We also investigated magnetic effects of clusters as a function of cluster size, however, their oscillatory magnetic moments were found to vary inversely to the fragmentation energy, second-order difference of energy, and HOMO-LUMO gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Roach, W.H. Woodward, A.W. Castleman Jr., A.C. Reber, S.N. Khanna, Science 323, 492 (2009)

    Article  ADS  Google Scholar 

  2. W.E. Kaden, T.P. Wu, W.A. Kunkel, S.L. Anderson, Science 326, 826 (2009)

    Article  ADS  Google Scholar 

  3. A.P. Yang, W. Fa, J.M. Dong, Phys. Lett. A 374, 4506 (2010)

    Article  ADS  Google Scholar 

  4. S.Y. Wei, Z.G. Wang, Z.X. Yang, Phys. Lett. A 363, 327 (2007)

    Article  ADS  Google Scholar 

  5. H.P. Wang, Y.J. Ko, L.G. García, P. Sen, M.R. Beltrán, K.H. Bowen, Phys. Chem. Chem. Phys. 13, 7685 (2011)

    Article  Google Scholar 

  6. D. Cantillo, M. Ávalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Org. Biomol. Chem. 9, 2952 (2011)

    Article  Google Scholar 

  7. A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das, Phys. Rev. B 83, 033404 (2011)

    Article  ADS  Google Scholar 

  8. H.J. Liu, J.P. Chou, R.W. Li, C.M. Wei, K. Miki, Phys. Rev. B 83, 075405 (2011)

    Article  ADS  Google Scholar 

  9. H. Cantera-López, L.C. Balbás, G. Borstel, Phys. Rev. B 83, 075434 (2011)

    Article  ADS  Google Scholar 

  10. S. Lecoultre, A. Rydlo, J. Buttet, C. Félix, S. Gilb, W. Harbich, J. Chem. Phys. 134, 184504 (2011)

    Article  ADS  Google Scholar 

  11. D.M. Popolan, M. Nössler, R. Mitriæ, T.M. Bernhardt, V. Bonačić-Koutecký, J. Phys. Chem. A 115, 951 (2011)

    Article  Google Scholar 

  12. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315, 220 (2007)

    Article  ADS  Google Scholar 

  13. M. Neumaier, F. Weigend, O. Hampe, M.M. Kappes, Faraday Discuss. 138, 393 (2008)

    Article  ADS  Google Scholar 

  14. Z. Li, C.V. Ciobanu, J.C. Hu, J.P. Palomares-Báez, J.L. Rodríguez-López, R. Richards, Phys. Chem. Chem. Phys. 13, 2582 (2011)

    Article  Google Scholar 

  15. A. Visilovskiy, H. Matsumoto, K. Mitsuhara, T. Nakada, T. Akita, Y. Kido, Phys. Rev. B 83, 165428 (2011)

    Article  ADS  Google Scholar 

  16. T.K. Ghanty, A. Banerjee, A. Chakrabarti, J. Phys. Chem. C 114, 20 (2010)

    Article  Google Scholar 

  17. G.C. Wang, L. Jiang, X.Y. Pang, J. Nakamura, J. Phys. Chem. B 109, 17943 (2005)

    Article  Google Scholar 

  18. P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)

    Article  ADS  Google Scholar 

  19. H. Häkkinen, B. Yoon, U. Landman, X. Li, H.J. Zhai, L.S. Wang, J. Phys. Chem. A 107, 6168 (2003)

    Article  Google Scholar 

  20. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002)

    Article  ADS  Google Scholar 

  21. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  22. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes, J. Chem. Phys. 117, 6982 (2002)

    Article  ADS  Google Scholar 

  23. X.B. Li, H.Y. Wang, X.D. Yang, Z.H. Zhu, Y.J. Tang, J. Chem. Phys. 126, 084505 (2007)

    Article  ADS  Google Scholar 

  24. S.M. Lang, T.M. Bernhardt, R.N. Barnett, B. Yoon, U. Landman, J. Am. Chem. Soc. 131, 8939 (2009)

    Article  Google Scholar 

  25. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Science 321, 1331 (2008)

    Article  ADS  Google Scholar 

  26. M. Sargolzaei, N. Lotfizadeh, Phys. Rev. B 83, 155404 (2011)

    Article  ADS  Google Scholar 

  27. S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)

    Article  ADS  Google Scholar 

  28. M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Rev. B 71, 155412 (2005)

    Article  ADS  Google Scholar 

  29. H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Chem. Phys. 119, 7115 (2003)

    Article  ADS  Google Scholar 

  30. J.J. Guo, J.X. Yang, D. Die, Physica B 367, 158 (2005)

    Article  ADS  Google Scholar 

  31. J.J. Guo, J.X. Yang, D. Die, J. Mol. Struct. Theochem 764, 117 (2006)

    Article  Google Scholar 

  32. S.J. Wang, X.Y. Kuang, C. Lu, Y.F. Li, Y.R. Zhao, Phys. Chem. Chem. Phys. 13, 10119 (2011)

    Article  Google Scholar 

  33. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L.T. Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)

    Article  ADS  Google Scholar 

  34. M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)

    Article  ADS  Google Scholar 

  35. R. Pal, L.M. Wang, W. Huang, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 131, 3396 (2009)

    Article  Google Scholar 

  36. C. Majumder, Phys. Rev. B 75, 235409 (2007)

    Article  ADS  Google Scholar 

  37. P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  38. M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86, 866 (1987)

    Article  ADS  Google Scholar 

  39. P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)

    Article  ADS  Google Scholar 

  40. J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally, J. Chem. Phys. 103, 9187 (1995)

    Article  ADS  Google Scholar 

  41. CRC Handbook of Chemistry and Physics, edited by R.C. Weast, 49th edn. (CRC, Cleveland, 1969)

  42. I. Haiduc, G. Mezei, R. Micu-Semeniuc, F.T. Edelmann, A. Fischer, Z. Anorg. Allg. Chem. 632, 295 (2006)

    Article  Google Scholar 

  43. S.G. Wang, W.H.E. Schwarz, J. Am. Chem. Soc. 126, 1266 (2004)

    Article  Google Scholar 

  44. M.J. Irwin, J.J. Vittal, G.P.A. Yap, R.J. Puddephatt, J. Am. Chem. Soc. 118, 13101 (1996)

    Article  Google Scholar 

  45. A. Bauer, W. Schneider, K. Angermaier, A. Schier, H. Schmidbaur, Inorg. Chim. Acta 251, 249 (1996)

    Article  Google Scholar 

  46. T.E. Müller, S.W. Choi, D.M.P. Mingos, D. Murphy, D.J. Williams, V.W. Yam, J. Organomet. Chem. 484, 209 (1994)

    Article  Google Scholar 

  47. M.J. Frisch et al., GAUSSIAN 03 Revision E.01 (Gaussian, Inc., Wallingford CT, 2004)

  48. C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)

    Article  ADS  Google Scholar 

  49. R.R. Zope, S.A. Blundell, C. Guet, Phys. Rev. A 63, 043202 (2001)

    Article  ADS  Google Scholar 

  50. T. Baruah, S.A. Blundell, R.R. Zope, Phys. Rev. A 64, 043202 (2001)

    Article  ADS  Google Scholar 

  51. R.R. Zope, S.A. Blundell, T. Baruah, D.G. Kanhere, J. Chem. Phys. 115, 2109 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Cao.

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cao, Y.P., Li, Y.F. et al. DFT study on size-dependent geometries, stabilities, and electronic properties of AunM2 (M = Si, P; n = 1–8) clusters. Eur. Phys. J. D 66, 10 (2012). https://doi.org/10.1140/epjd/e2011-20468-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2011-20468-5

Keywords

Navigation