Skip to main content
Log in

Geometrical structure, stability and electronic properties of AunHg(\(1 \leq n \leq 12\)) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The geometrical structures, relative stabilities, electronic properties and chemical hardness of AunHg(\( n=1-12\)) clusters are systematically investigated using the density functional theory with relativistic all-electron methods. The optimized low-lying energy geometries exhibit two-dimensional and three-dimensional structures. Furthermore, all the lowest-energy structures of AunHg(\( n=1-12\)) clusters favor planar geometries with slight distortion, in which the dopant Hg atom prefers to occupy a peripheral site with a lower coordination. The geometrical, electronic and chemical stabilities of the AunHg cluster with even number of valence electrons are higher than those of the neighboring AunHg cluster with odd number of valence electrons. Besides, 5d valence electrons of impurity Hg atom in the AunHg cluster hardly join in the orbital interactions compared with 5d valence electrons of corresponding Au atom in Aun+1 cluster. Au-Hg bonds in AunHg clusters are weaker and have more obviously ionic-like characteristics than the corresponding Au-Au bonds in Aun+1 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)

    Article  ADS  Google Scholar 

  2. J.L. Rao, G.K. Chaitanya, S. Basavaraja, K. Bhanuprakash, A. Venkataramana, J. Mol. Struct. THEOCHEM 803, 89 (2007)

    Article  Google Scholar 

  3. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L.T. Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)

    Article  ADS  Google Scholar 

  4. L.M. Wang, J. Bai, A. Lechtken, W. Huang, D. Schooss, M.M. Kappes, X.C. Zeng, L.S. Wang, Phys. Rev. B 79, 033413 (2009)

    Article  ADS  Google Scholar 

  5. X. Li, B. Kiran, L.F. Cui, L.S. Wang, Phys. Rev. Lett. 95, 253401 (2005)

    Article  ADS  Google Scholar 

  6. B.R. Sahu, G. Maofa, L. Kleinman, Phys. Rev. B 67, 115420 (2003)

    Article  ADS  Google Scholar 

  7. X.J. Li, K.H. Su, Theor. Chem. Acc. 124, 345 (2009)

    Article  Google Scholar 

  8. G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B.C. Curley, L.D. Lloyd, R.L. Johnston, J. Chem. Phys. 122, 194309 (2005)

    Article  ADS  Google Scholar 

  9. S.F. Li, X.L. Xue, Y. Jia, G.F. Zhao, M.F. Zhang, X.G. Gong, Phys. Rev. B 73, 165401 (2006)

    Article  ADS  Google Scholar 

  10. E. Cottancin, J. Lerme, M. Gaudry, M. Pellarin, J.L. Vialle, M. Broyer, Phys. Rev. B 62, 5179 (2000)

    Article  ADS  Google Scholar 

  11. H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, J. Phys. Chem. B 106, 8714 (2002)

    Article  Google Scholar 

  12. K. Koszinowski, D. Schroder, H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003)

    Google Scholar 

  13. K. Koszinowski, D. Schroder, H. Schwarz, Organometallics 23, 1132 (2004)

    Article  Google Scholar 

  14. K. Koszinowski, D. Schroder, H. Schwarz, J. Am. Chem. Soc. 125, 3676 (2003)

    Article  Google Scholar 

  15. E. Rykova, A. Zaitsevskii, N. Mosyagin, T. Isaev, A. Titov, J. Chem. Phys. 125, 241102 (2006)

    Article  ADS  Google Scholar 

  16. E.M. Fernández, L.C. Balbás, Phys. Chem. Chem. Phys. 13, 20863 (2011)

    Article  Google Scholar 

  17. D. Manna, T. Jayasekharan, T.K. Ghanty, J. Phys. Chem. C 117, 18777 (2013)

    Article  Google Scholar 

  18. P. Zaleski-Ejgierd, P. Pyykko, J. Phys. Chem. A 113, 12380 (2009)

    Article  Google Scholar 

  19. Y.S. Lee, W.C. Ermler, K.S. Pitzer, J. Chem. Phys. 67, 5861 (1997)

    Article  ADS  Google Scholar 

  20. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  21. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  22. A.D. Becke, J. Chem. Phys. 88, 2547 (1988)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  24. J. Autschbach, S. Siekierski, M. Seth, P. Schwerdtfeger, W. Schwarz, J. Comp. Chem. 23, 804 (2002)

    Article  Google Scholar 

  25. S.N. Datta, C.S. Ewig, J.R.V. Wazer, Chem. Phys. Lett. 57, 83 (1978)

    Article  ADS  Google Scholar 

  26. W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 70, 612 (1992)

    Article  Google Scholar 

  27. S. Wildman, G. Dilabio, P. Christiansen, J. Chem. Phys. 107, 9975 (1997)

    Article  ADS  Google Scholar 

  28. P.K. Jain, Struct. Chem. 16, 421 (2005)

    Article  Google Scholar 

  29. J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  30. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002)

    Article  ADS  Google Scholar 

  31. R. Wesendrup, T. Hunt, P. Schwerdtfeger, J. Chem. Phys. 112, 9356 (2000)

    Article  ADS  Google Scholar 

  32. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  33. A. Deka, R.C. Deka, J. Mol. Struct. THEOCHEM 870, 83 (2008)

    Article  Google Scholar 

  34. H.P. Mao, H.Y. Wang, Y. Ni, G.L. Xu, Acta. Phys. Sin. 53, 1766 (2004)

    Google Scholar 

  35. H. Myoung, M. Ge, B.R. Sahu, P. Tarakeswar, K.S. Kim, J. Chem. Phys. 107, 9994 (2003)

    Article  Google Scholar 

  36. H. Hakkinen, U. Landman, Phys. Rev. B 62, 2287 (2000)

    Article  ADS  Google Scholar 

  37. S. Simard, P. Hackett, J. Mol. Spectrosc. 142, 310 (1990)

    Article  ADS  Google Scholar 

  38. J. Ho, K.M. Ervin, W. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Article  ADS  Google Scholar 

  39. L. Ames, R. Barrow, Trans. Faraday Soc. 63, 39 (1967)

    Article  Google Scholar 

  40. K.P. Huber, G. Herzberg, Constants of diatomic molecules (Van Nostrand Reinhold, New York, 1979)

  41. C. Jackslath, I. Rabin, W. Schulze, B. Bunsenges, Phys. Chem. 96, 1200 (1992)

    Google Scholar 

  42. V. Pershina, J. Anton, T. Bastug, Eur. Phys. J. D 45, 87 (2007)

    Article  ADS  Google Scholar 

  43. R. Wesendrup, J.K. Laerdahl, P. Schwerdtfeger, J. Chem. Phys. 110, 9457 (1999)

    Article  ADS  Google Scholar 

  44. K. Fukui, Science 218, 747 (1982)

    Article  ADS  Google Scholar 

  45. L. Guo, J. Alloys Comp. 498, 121 (2010)

    Article  Google Scholar 

  46. J.G. He, K.G. Wu, C.P. Liu, R.G. Sa, Chem. Phys. Lett. 483, 30 (2009)

    Article  ADS  Google Scholar 

  47. H. Hakkinen, U. Landman, Phys. Rev. B 62, R2287 (2000)

    Article  ADS  Google Scholar 

  48. H.L. Zhang, D.X. Tian, Comput. Mater. Sci. 42, 46 (2008)

    Article  Google Scholar 

  49. G.H. Guvelioglu, P.P. Ma, X.Y. He, R.C. Forrey, H.S. Cheng, Phys. Rev. B 73, 155436 (2006)

    Article  ADS  Google Scholar 

  50. X.J. Kuang, X.Q. Wang, G.B. Liu, J. Alloys Comp. 570, 46 (2013)

    Article  Google Scholar 

  51. X.J. Kuang, X.Q. Wang, G.B. Liu, Eur. Phys. J. D 63, 111 (2011)

    Article  ADS  Google Scholar 

  52. X.J. Kuang, X.Q. Wang, G.B. Liu, Trans. Met. Chem. 36, 643 (2011)

    Article  Google Scholar 

  53. X.J. Kuang, X.Q. Wang, G.B. Liu, App. Surf. Sci. 257, 6546 (2011)

    Article  ADS  Google Scholar 

  54. X.J. Kuang, X.Q. Wang, G.B. Liu, Catal. Lett. 137, 247 (2010)

    Article  Google Scholar 

  55. X.J. Kuang, X.Q. Wang, G.B. Liu, J. Mol. Model. 17, 2005 (2011)

    Article  Google Scholar 

  56. S. Phala, G. Klatt, E.V. Steen, Chem. Phys. Lett. 395, 33 (2004)

    Article  ADS  Google Scholar 

  57. W.A.D. Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  58. B. Assadollahzadeha, P. Schwerdtfegera, J. Chem. Phys. 131, 06430 (2009)

    Google Scholar 

  59. K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 358, 224 (2002)

    Article  ADS  Google Scholar 

  60. R. Hatz, V. Hanninen, L. Halonen, J. Phys. Chem. A 118, 5734 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Kuang, X. Geometrical structure, stability and electronic properties of AunHg(\(1 \leq n \leq 12\)) clusters. Eur. Phys. J. Plus 131, 285 (2016). https://doi.org/10.1140/epjp/i2016-16285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16285-1

Navigation