Skip to main content
Log in

Abstract.

We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a path to producing large samples of polar molecules at temperatures much lower than has been previously possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Julienne, Nature 424, 24 (2003); B.G. Levi, Phys. Today 53, 46 (2000)

    Article  Google Scholar 

  2. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Google Scholar 

  3. M.A. Baranov, M.S. Mar’enko, Val.S. Rychkov, G.V. Shlyapnikov, Phys. Rev. A 66, 013606 (2002)

    Article  Google Scholar 

  4. K. Góral, L. Santos, M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002), and references therein

    Article  Google Scholar 

  5. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); D.S. Petrov, G.V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001); U. Al Khawaja, J.O. Andersen, N.P. Proukakis, H.T.C. Stoof, Phys. Rev. A 66, 013615 (2002); D.S. Petrov, M.A. Baranov, G.V. Shlyapnikov, Phys. Rev. A 67, 031601 (2003)

    Article  Google Scholar 

  6. E. Bodo, F. Gianturco, A. Dalgarno, J. Chem. Phys. 116, 9222 (2002), and references therein

    Article  Google Scholar 

  7. A.V. Avdeenkov, J.L. Bohn, Phys. Rev. Lett. 90, 043006 (2003)

    Article  Google Scholar 

  8. M. Kozlov, L. Labzowsky, J. Phys. B 28, 1933 (1995)

    Google Scholar 

  9. A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 92, 033004 (2004); A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 92, 153001 (2004)

    Article  Google Scholar 

  10. M.W. Mancini et al. , Phys. Rev. Lett. 92, 133203 (2004)

    Article  Google Scholar 

  11. E. Eyler, W. Stwalley, private communication

  12. G. Modugno, G. Roati, M. Inguscio, Fortschr. Phys. 51, 396 (2003); A. Simoni et al. , Phys. Rev. Lett. 90, 163202 (2003)

    Article  Google Scholar 

  13. J.D. Weinstein et al. , Nature 395, 148 (1998)

    Article  Google Scholar 

  14. H.L. Bethlem et al. , Nature 406, 491 (2000)

    Article  Google Scholar 

  15. S.A. Rangwala et al. , Phys. Rev. A 67, 043406 (2003)

    Article  Google Scholar 

  16. M.S. Elioff, J.J. Vaentini, D.W. Chandler, Science 302, 1940 (2003)

    Article  Google Scholar 

  17. J.R. Bochinski et al. , Phys. Rev. Lett. 91, 243001 (2003)

    Article  Google Scholar 

  18. J.L. Bohn, Phys. Rev. A 63, 052714 (2001)

    Article  Google Scholar 

  19. M. Kajita, Eur. Phys. J. D 20, 55 (2002)

    Article  Google Scholar 

  20. M. Kajita, Eur. Phys. J. D 23, 337 (2003)

    Google Scholar 

  21. A. Volpi, J.L. Bohn, Phys. Rev. A 65, 052712 (2002)

    Article  Google Scholar 

  22. M. Kajita, Phys. Rev. A 69, 012709 (2004) argues that evaporative cooling can be effective for fermionic molecules in electrostatic traps, at very low temperatures

    Article  Google Scholar 

  23. H.J. Loesch, B. Scheel, Phys. Rev. Lett. 85, 2709 (2000)

    Article  Google Scholar 

  24. F.M.H. Crompvoets, H.L. Bethlem, R.T. Jongma, G. Meijer, Nature 411, 174 (2001)

    Article  Google Scholar 

  25. T. Junglen et al. , Phys. Rev. Lett. 92, 223001 (2004)

    Article  Google Scholar 

  26. See e.g. C.H. Townes, A.L. Shawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955)

  27. S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57, 314 (1986); J.D. Miller, R.A. Cline, D.J. Heinzen, Phys. Rev. A 47, R4567 (1993)

    Article  Google Scholar 

  28. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (John Wiley & Sons, New York, 1992)

  29. See e.g. R.N. Clarke, C.B. Rosenberg, J. Phys. E 15, 9 (1982)

    MATH  Google Scholar 

  30. See e.g. A. Yariv, Quantum Electronics, 3rd edn. (John Wiley & Sons, New York, 1989)

  31. L.P. Grachev, I.I. Esakov, S.G. Malyk, K.V. Khodataev, Tech. Phys. 46, 709 (2001)

    Article  Google Scholar 

  32. T. Matsui, IEEE Trans. Microw. Theory Tech. 41, 1710 (1993)

    Article  Google Scholar 

  33. J. Tuovinen, IEEE Trans. Ant. Propag. 40, 391 (1992); S. Nemoto, Appl. Opt. 29, 1940 (1990); T. Takenaka, M. Yokota, O. Fukumitsu, J. Opt. Soc. Am. A 2, 826 (1985); G.P. Agrawal, M. Lax, Phys. Rev. A 27, 1693 (1983)

    Article  Google Scholar 

  34. J.D. Jackson, Classical Electrodynamics, 2nd edn. (John Wiley & Sons, New York, 1975), Problem 7.4

  35. R.E. Lawrie, L. Peters Jr, IEEE Trans. Ant. Propag. 14, 605 (1966)

    Article  Google Scholar 

  36. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (Von Nostrand Reinhold, New York, 1979)

  37. H.L. Bethlem, A.J.A. van Roij, R.T. Jongma, G. Meijer, Phys. Rev. Lett. 88, 133003 (2002); M.R. Tarbutt et al. , Phys. Rev. Lett. 92, 173002 (2004)

    Article  Google Scholar 

  38. A similar trap loading scheme is discussed in: S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, G. Meijer, Phys. Rev. A 64, 041401R (2001); S.Y.T. van de Meerakker et al. , Phys. Rev. A 68, 032508 (2003)

    Article  Google Scholar 

  39. H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999)

    Article  Google Scholar 

  40. N. Brahms et al. , Bull. Am. Phys. Soc. 49, 52 (2004); J. Doyle et al. , unpublished

    Google Scholar 

  41. A.V. Avdeenkov, J.L. Bohn, Phys. Rev. A 66, 052718 (2002)

    Article  Google Scholar 

  42. P.S. Julienne, F.H. Mies, J. Opt. Soc. Am. B 6, 2257 (1989)

    Google Scholar 

  43. See e.g. J.J. Sakurai, Modern Quantum Mechanics (Revised Edition) (Addison-Wesley, Reading, MA, 1994)

  44. J.M. Amini, H. Gould, Phys. Rev. Lett. 91, 153001 (2003)

    Article  Google Scholar 

  45. P. Soldán, J.M. Hutson, Phys. Rev. Lett. 92, 163202 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. DeMille.

Additional information

Received: 30 June 2004, Published online: 23 November 2004

PACS:

33.80.Ps Optical cooling of molecules; trapping - 34.50.-s Scattering of atoms and molecules - 33.80.-b Photon interactions with molecules - 33.55.Be Zeeman and Stark effects

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeMille, D., Glenn, D.R. & Petricka, J. Microwave traps for cold polar molecules. Eur. Phys. J. D 31, 375–384 (2004). https://doi.org/10.1140/epjd/e2004-00163-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00163-6

Keywords

Navigation