Skip to main content
Log in

New physics in BK μμ?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Recent experimental results on angular observables in the rare decay BK μ + μ show significant deviations from Standard Model predictions. We investigate the possibility that these deviations are due to new physics. Combining all relevant data on bs rare decays, we show that a consistent explanation of most anomalies can be obtained by new physics contributing simultaneously to the semi-leptonic vector operator O 9 and its chirality-flipped counterpart \(O_{9}'\). A partial explanation is possible with new physics in O 9 or in dipole operators only. We study in detail the implications for models of new physics, in particular the minimal supersymmetric standard model, models with partial compositeness and generic models with flavour-changing Z′ bosons. In all considered models, contributions to BK μ + μ of the preferred size imply a spectrum close to the TeV scale. We stress that measurements of CP asymmetries in BK μ + μ could provide valuable information to narrow down possible new physics explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We do not use the LHCb measurement of BR(B 0K 0 μ + μ ) [35], which has larger error bars. Note that this measurement is on the low side compared to the charged decay, which is hard to accommodate even in the presence of new physics [36]. We do not average the B +K + μ + μ data with B factory or CDF data either, since they have a numerically negligible impact.

  2. We note that our treatment of form factors at high q 2 is based on the extrapolation of light-cone sum rule calculations [41] done in [42], which leads to particularly large uncertainties in F L compared to other approaches.

  3. Experimental results for S 4 and S 5 in the [1,6] GeV2 region are not available yet. We therefore translate the results on \(P_{4}^{\prime}\) and \(P_{5}^{\prime}\) using the measured value of F L and get 〈S 4[1,6]=0.14±0.08, 〈S 5[1,6]=0.10±0.10.

  4. We stress the different sign of our definition of S 4 with respect to LHCb, see Table 1.

  5. We stress that in all the following plots, the red regions combine all relevant constraints, while the bands for individual observables are only shown for illustrative purposes for some of the most relevant observables. We also note that 68 and 95 % C.L. constraints on individual coefficients can be read off from the overlap of the bands with the axes, while the two-dimensional regions would correspond to 39 and 86 % C.L.

  6. We consider the branching ratio in the entire high-q 2 region for indicative purposes. In the numerical analysis, we use three separate bins, as in the LHCb analysis.

  7. Note that, given the present uncertainties in the BK μ + μ data, a sizable axial-vector coupling to leptons cannot be excluded yet. Allowing for non-zero axial-vector couplings to leptons, could either enhance or suppress couplings to neutrinos.

  8. We explicitly checked that in all cases discussed below and shown in Fig. 9, the presence of imaginary parts does not worsen the agreement with the data significantly.

  9. N. Serra, private communication.

References

  1. C. Bobeth, G. Hiller, G. Piranishvili, CP asymmetries in \(\bar{B} \to\bar{K}^{*} (\to\bar{K} \pi) \bar {\ell} \ell\) and untagged \(\bar{B}_{s}\), \(B_{s} \to\phi(\to K^{+} K^{-}) \bar{\ell} \ell\) decays at NLO. J. High Energy Phys. 0807, 106 (2008). arXiv:0805.2525

    Article  ADS  Google Scholar 

  2. C. Bobeth, G. Hiller, D. van Dyk, The benefits of \(\bar{B} \to\bar{K}^{*} l^{+} l^{-}\) decays at low recoil. J. High Energy Phys. 1007, 098 (2010). arXiv:1006.5013

    Article  ADS  Google Scholar 

  3. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh et al., New physics in b + μ : CP-conserving observables. J. High Energy Phys. 1111, 121 (2011). arXiv:1008.2367

    Article  ADS  Google Scholar 

  4. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh et al., New physics in b + μ : CP-violating observables. J. High Energy Phys. 1111, 122 (2011). arXiv:1103.5344

    Article  ADS  Google Scholar 

  5. S. Descotes-Genon, D. Ghosh, J. Matias, M. Ramon, Exploring new physics in the C 7\(C_{7}^{\prime}\) plane. J. High Energy Phys. 1106, 099 (2011). arXiv:1104.3342

    Article  ADS  Google Scholar 

  6. C. Bobeth, G. Hiller, D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP violation. J. High Energy Phys. 1107, 067 (2011). arXiv:1105.0376

    Article  ADS  Google Scholar 

  7. D. Becirevic, E. Schneider, On transverse asymmetries in BK l + l . Nucl. Phys. B 854, 321–339 (2012). arXiv:1106.3283

    Article  ADS  MATH  Google Scholar 

  8. W. Altmannshofer, P. Paradisi, D.M. Straub, Model-independent constraints on new physics in bs transitions. J. High Energy Phys. 1204, 008 (2012). arXiv:1111.1257

    Article  ADS  Google Scholar 

  9. C. Bobeth, G. Hiller, D. van Dyk, C. Wacker, The decay BKl + l at low hadronic recoil and model-independent ΔB=1 constraints. J. High Energy Phys. 1201, 107 (2012). arXiv:1111.2558

    Article  ADS  Google Scholar 

  10. J. Matias, F. Mescia, M. Ramon, J. Virto, Complete anatomy of \(\bar{B}_{d} \to\bar{K}^{* 0} (\to K \pi )l^{+}l^{-}\) and its angular distribution. J. High Energy Phys. 1204, 104 (2012). arXiv:1202.4266

    Article  ADS  Google Scholar 

  11. F. Beaujean, C. Bobeth, D. van Dyk, C. Wacker, Bayesian fit of exclusive \(b \to s \bar{\ell}\ell\) decays: the standard model operator basis. J. High Energy Phys. 1208, 030 (2012). arXiv:1205.1838

    Article  ADS  Google Scholar 

  12. W. Altmannshofer, D.M. Straub, Cornering new physics in bs transitions. J. High Energy Phys. 1208, 121 (2012). arXiv:1206.0273

    Article  ADS  Google Scholar 

  13. D. Becirevic, E. Kou, A. Le Yaouanc, A. Tayduganov, Future prospects for the determination of the Wilson coefficient \(C_{7\gamma}^{\prime}\). J. High Energy Phys. 1208, 090 (2012). arXiv:1206.1502

    Article  ADS  Google Scholar 

  14. S. Descotes-Genon, J. Matias, M. Ramon, J. Virto, Implications from clean observables for the binned analysis of BKμ + μ at large recoil. J. High Energy Phys. 1301, 048 (2013). arXiv:1207.2753

    Article  ADS  Google Scholar 

  15. C. Bobeth, G. Hiller, D. van Dyk, General analysis of \(\bar{B} \to\bar{K}^{(*)}\ell^{+} \ell^{-}\) decays at low recoil. Phys. Rev. D 87, 034016 (2013). arXiv:1212.2321

    Article  ADS  Google Scholar 

  16. S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, Optimizing the basis of BK + observables in the full kinematic range. J. High Energy Phys. 1305, 137 (2013). arXiv:1303.5794

    Article  ADS  Google Scholar 

  17. J.-T. Wei et al. (BELLE Collaboration), Measurement of the differential branching fraction and forward–backward asymmetry for BK (∗) l + l . Phys. Rev. Lett. 103, 171801 (2009). arXiv:0904.0770

    Article  ADS  Google Scholar 

  18. J. Lees et al. (BaBar Collaboration), Measurement of branching fractions and rate asymmetries in the rare decays BK (∗) l + l . Phys. Rev. D 86, 032012 (2012). arXiv:1204.3933

    Article  ADS  Google Scholar 

  19. T. Aaltonen et al. (CDF Collaboration), Observation of the baryonic flavor-changing neutral current decay Λ b Λμ + μ . Phys. Rev. Lett. 107, 201802 (2011). arXiv:1107.3753

    Article  ADS  Google Scholar 

  20. T. Aaltonen et al. (CDF Collaboration), Measurements of the angular distributions in the decays BK (∗) μ + μ at CDF. Phys. Rev. Lett. 108, 081807 (2012). arXiv:1108.0695

    Article  ADS  Google Scholar 

  21. CDF Collaboration, Updated branching ratio measurements of exclusive b + μ decays and angular analysis in BK (∗) μ + μ decays. CDF public note 10894

  22. R. Aaij et al. (LHCb Collaboration), Differential branching fraction and angular analysis of the decay B 0K ∗0 μ + μ . arXiv:1304.6325

  23. R. Aaij et al. (LHCb Collaboration), Measurement of form-factor independent observables in the decay B 0K ∗0 μ + μ . arXiv:1308.1707

  24. ATLAS Collaboration, Angular analysis of B d K ∗0 μ + μ with the ATLAS experiment, ATLAS-CONF-2013-038, ATLAS-COM-CONF-2013-043

  25. CMS Collaboration, Angular analysis and branching ratio measurement of the decay B 0K ∗0 μ + μ , CMS-PAS-BPH-11-009

  26. A. Khodjamirian, T. Mannel, A. Pivovarov, Y.-M. Wang, Charm-loop effect in BK (∗) + and BK γ. J. High Energy Phys. 1009, 089 (2010). arXiv:1006.4945

    Article  ADS  Google Scholar 

  27. M. Beylich, G. Buchalla, T. Feldmann, Theory of BK (∗) l + l decays at high q 2: OPE and quark–hadron duality. Eur. Phys. J. C 71, 1635 (2011). arXiv:1101.5118

    Article  ADS  Google Scholar 

  28. D. Becirevic, A. Tayduganov, Impact of \(B\to K^{\ast}_{0} \ell^{+}\ell^{-}\) on the new physics search in BK + decay. Nucl. Phys. B 868, 368–382 (2013). arXiv:1207.4004

    Article  ADS  MATH  Google Scholar 

  29. J. Matias, On the S-wave pollution of BK l + l observables. Phys. Rev. D 86, 094024 (2012). arXiv:1209.1525

    Article  ADS  Google Scholar 

  30. S. Jäger, J.M. Camalich, On BVll at small dilepton invariant mass, power corrections, and new physics. J. High Energy Phys. 1305, 043 (2013). arXiv:1212.2263

    Article  Google Scholar 

  31. S. Descotes-Genon, J. Matias, J. Virto, Understanding the BK μ + μ anomaly. arXiv:1307.5683

  32. W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub et al., Symmetries and asymmetries of BK μ + μ decays in the standard model and beyond. J. High Energy Phys. 0901, 019 (2009). arXiv:0811.1214

    Article  ADS  Google Scholar 

  33. C. Bouchard, G.P. Lepage, C. Monahan, H. Na, J. Shigemitsu, The rare decay BKll form factors from lattice QCD. arXiv:1306.2384

  34. C. Bouchard, G.P. Lepage, C. Monahan, H. Na, J. Shigemitsu, Standard Model predictions for BKll with form factors from lattice QCD. arXiv:1306.0434

  35. R. Aaij et al. (LHCb Collaboration), Measurement of the isospin asymmetry in BK (∗) μ + μ decays. J. High Energy Phys. 1207, 133 (2012). arXiv:1205.3422

    Article  ADS  Google Scholar 

  36. J. Lyon, R. Zwicky, Isospin asymmetries in B→(K ,ρ)γ/l + l and BKl + l in and beyond the Standard Model. arXiv:1305.4797

  37. R. Aaij et al. (LHCb Collaboration), Differential branching fraction and angular analysis of the B +K + μ + μ decay. J. High Energy Phys. 1302, 105 (2013). arXiv:1209.4284

    Article  ADS  Google Scholar 

  38. S. Chatrchyan et al. (CMS Collaboration), Measurement of the \(B_{s}^{0} \to\mu^{+} \mu^{-}\) branching fraction and search for B 0μ + μ with the CMS experiment. arXiv:1307.5025

  39. R. Aaij et al. (LHCb Collaboration), Measurement of the \(B^{0}_{s} \to\mu^{+} \mu^{-}\) branching fraction and search for B 0μ + μ decays at the LHCb experiment. arXiv:1307.5024

  40. R. Aaij et al. (LHCb Collaboration), Observation of a resonance in B +K + μ + μ decays at low recoil. arXiv:1307.7595

  41. P. Ball, R. Zwicky, B d,s ρ, ω, K , ϕ decay form-factors from light-cone sum rules revisited. Phys. Rev. D 71, 014029 (2005). hep-ph/0412079

    Article  ADS  Google Scholar 

  42. A. Bharucha, T. Feldmann, M. Wick, Theoretical and phenomenological constraints on form factors for radiative and semi-leptonic B-meson decays. J. High Energy Phys. 1009, 090 (2010). arXiv:1004.3249

    Article  ADS  Google Scholar 

  43. P. Langacker, M. Plumacher, Flavor changing effects in theories with a heavy Z′ boson with family nonuniversal couplings. Phys. Rev. D 62, 013006 (2000). hep-ph/0001204

    Article  ADS  Google Scholar 

  44. S. Sun, D.B. Kaplan, A.E. Nelson, Little flavor: a model of weak-scale flavor physics. arXiv:1303.1811

  45. P.J. Fox, J. Liu, D. Tucker-Smith, N. Weiner, An effective Z′. Phys. Rev. D 84, 115006 (2011). arXiv:1104.4127

    Article  ADS  Google Scholar 

  46. V. Barger, L.L. Everett, J. Jiang, P. Langacker, T. Liu et al., bs transitions in family-dependent U(1)′ models. J. High Energy Phys. 0912, 048 (2009). arXiv:0906.3745

    Article  ADS  Google Scholar 

  47. A. Dighe, D. Ghosh, How large can the branching ratio of B s τ + τ be? Phys. Rev. D 86, 054023 (2012). arXiv:1207.1324

    Article  ADS  Google Scholar 

  48. A.J. Buras, F. De Fazio, J. Girrbach, The anatomy of Z′ and Z with flavour changing neutral currents in the flavour precision era. J. High Energy Phys. 1302, 116 (2013). arXiv:1211.1896

    Article  ADS  Google Scholar 

  49. A. Abulencia et al. (CDF Collaboration), Measurement of the \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) oscillation frequency. Phys. Rev. Lett. 97, 062003 (2006). hep-ex/0606027

    Article  ADS  Google Scholar 

  50. R. Aaij et al. (LHCb Collaboration), Precision measurement of the \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) oscillation frequency with the decay \(B^{0}_{s}\rightarrow D^{-}_{s}\pi^{+}\). New J. Phys. 15, 053021 (2013). arXiv:1304.4741

    Article  Google Scholar 

  51. CMS Collaboration, Search for narrow resonances using the dijet mass spectrum with 19.6 fb−1 of pp collisions. at \(\sqrt{s}=8\) TeV, CMS-PAS-EXO-12-059

  52. CMS Collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \(\sqrt{s} = 8\) TeV. CMS-PAS-EXO-12-061

  53. ATLAS Collaboration, Search for high-mass dilepton resonances in 20 fb −1 of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS experiment, ATLAS-CONF-2013-017, ATLAS-COM-CONF-2013-010

  54. W. Altmannshofer, A.J. Buras, D.M. Straub, M. Wick, New strategies for new physics search in \(B \to K^{*} \nu\bar {\nu}\), \(B \to K \nu\bar{\nu}\) and \(B \to X_{s} \nu\bar{\nu}\) decays. J. High Energy Phys. 0904, 022 (2009). arXiv:0902.0160

    Article  ADS  Google Scholar 

  55. T. Aushev, W. Bartel, A. Bondar, J. Brodzicka, T. Browder et al., Physics at super B factory. arXiv:1002.5012

  56. E. Lunghi, A. Masiero, I. Scimemi, L. Silvestrini, BX s l + l decays in supersymmetry. Nucl. Phys. B 568, 120–144 (2000). hep-ph/9906286

    Article  ADS  Google Scholar 

  57. S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \(\sqrt{s} = 8\) TeV. arXiv:1303.2985

  58. ATLAS Collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \(\sqrt{s} = 8\) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053

  59. R. Contino, T. Kramer, M. Son, R. Sundrum, Warped/composite phenomenology simplified. J. High Energy Phys. 0705, 074 (2007). hep-ph/0612180

    Article  ADS  Google Scholar 

  60. K. Agashe, G. Perez, A. Soni, B-factory signals for a warped extra dimension. Phys. Rev. Lett. 93, 201804 (2004). hep-ph/0406101

    Article  ADS  Google Scholar 

  61. G. Burdman, Constraints on the bulk standard model in the Randall–Sundrum scenario. Phys. Rev. D 66, 076003 (2002). hep-ph/0205329

    Article  ADS  Google Scholar 

  62. M. Blanke, A.J. Buras, B. Duling, K. Gemmler, S. Gori, Rare K and B decays in a warped extra dimension with custodial protection. J. High Energy Phys. 0903, 108 (2009). arXiv:0812.3803

    Article  ADS  Google Scholar 

  63. M. Bauer, S. Casagrande, U. Haisch, M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes. J. High Energy Phys. 1009, 017 (2010). arXiv:0912.1625

    Article  ADS  Google Scholar 

  64. K. Agashe, R. Contino, L. Da Rold, A. Pomarol, A custodial symmetry for \(Z\to b\bar{b}\). Phys. Lett. B 641, 62–66 (2006). hep-ph/0605341

    Article  ADS  Google Scholar 

  65. D.M. Straub, Anatomy of flavour-changing Z couplings in models with partial compositeness. arXiv:1302.4651

  66. K. Agashe, A. Azatov, L. Zhu, Flavor violation tests of Warped/Composite SM in the two-site approach. Phys. Rev. D 79, 056006 (2009). arXiv:0810.1016

    Article  ADS  Google Scholar 

  67. O. Gedalia, G. Isidori, G. Perez, Combining direct & indirect kaon CP violation to constrain the warped KK scale. Phys. Lett. B 682, 200–206 (2009). arXiv:0905.3264

    Article  ADS  Google Scholar 

  68. M. Blanke, B. Shakya, P. Tanedo, Y. Tsai, The birds and the Bs in RS: the b penguin in a warped extra dimension. J. High Energy Phys. 1208, 038 (2012). arXiv:1203.6650

    Article  ADS  Google Scholar 

  69. N. Vignaroli, ΔF=1 constraints on composite Higgs models with LR parity. Phys. Rev. D 86, 115011 (2012). arXiv:1204.0478

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Christoph Bobeth for illuminating discussions and Nicola Serra for useful correspondence. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The research of D.S. is supported by the Advanced Grant EFT4LHC of the European Research Council (ERC), and the Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA–EXC 1098). The research of W.A. was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Altmannshofer.

Appendices

Appendix A: Data averages

In this appendix we give more details on how we obtain the averages of experimental measurements of BK μ + μ observables [17, 18, 2125] used in this analysis. As in [12], we first symmetrise asymmetric statistical and/or systematic errors and then perform a weighted average of the symmetrised individual results. While in many cases the obtained averages are dominated by the LHCb results, the averaging procedure leads to important shifts in the observables F L and A FB in the [1,6] GeV2 bin. This is illustrated in the plots of Fig. 10. In the case of the BaBar BK μ + μ data at low q 2, the results for the charged and neutral modes show a significant difference. We therefore first average the charged and neutral mode results of BaBar, using the PDG averaging method, i.e. rescaling the uncertainty by a factor of \(\sqrt{\chi^{2}}\). We then use this average and combine it with the available data from the other experiments.

Fig. 10
figure 10

Individual experimental results with 1σ uncertainties for A FB (left) and F L (right) in the [1,6] GeV2 bin, as well as our averages. The SM predictions with 1σ uncertainties are shown by the green bands

In the case of F L , we observe tensions between the data of the several experiments. In particular, in the [1,6] GeV2 bin, both BaBar and ATLAS data are significantly below the measurements of the other experiments and the SM prediction. Therefore, we rescale the uncertainty of our weighted average of F L by \(\sqrt{\chi^{2}/N_{\text{dof}}}\). As shown in the right plot of Fig. 10, a tension with the SM prediction of 1.9σ remains. In the case of A FB, the tension between the SM prediction and the LHCb data alone is softened considerably after data from the other experiments is taken into account (see left plot of Fig. 10).

A final comment is in order on the observables S 4 and S 5 that have only been measured by LHCb. Since Ref. [23] does not provide data for these observables in the [1,6] GeV2 bin, we have reconstructed them using the data on \(P_{4,5}'\) and F L as in Table 1, which is expected to be very close to a direct determination.Footnote 9

In Table 3, we list the resulting experimental averages for the angular observables and confront them with our SM predictions.

Table 3 SM predictions confronted with experimental averages of BK μ + μ angular observables in the three q 2 bins. The pull is defined as \(\sqrt{\Delta\chi^{2}}\). Details and references are given in the text

Appendix B: Loop functions

In this appendix we collect the loop functions that appear in the discussion of the NP contributions to the Wilson coefficients \(C_{9}^{(\prime)}\) and \(C_{7}^{(\prime)}\) in Sects. 3.2 and 3.3.

The loop functions entering MSSM contributions to the vector coefficients C 9 and \(C_{9}^{\prime}\) read

$$\begin{aligned} f_9^{H^\pm}(x) =& -\frac{2(38-79x+47x^2)}{9(1-x)^3} \\ &{}- \frac {4(4-6x+3x^3)\log x}{3(1-x)^4} \xrightarrow{x \to1} 1 , \end{aligned}$$
(30)
$$\begin{aligned} f_9^{\tilde{H}^\pm}(x) =& -\frac{2(52-101x+43x^2)}{21(1-x)^3} \\ &{}- \frac {4(6-9x+2x^3)\log x}{7(1-x)^4} \xrightarrow{x \to1} 1 , \end{aligned}$$
(31)
$$\begin{aligned} f_9^{\tilde{g}}(x) =& \frac{5(1-5x+13x^2+3x^3)}{3(1-x)^4} \\ &{} + \frac{20x^3 \log x}{(1-x)^5} \xrightarrow{x \to1} 1 , \end{aligned}$$
(32)
$$\begin{aligned} f_9^{\tilde{W}}(x) =& -\frac{10(22-38x+7x^2+3x^3)}{3(1-x)^4} \\ &{} - \frac {10(3-9x^2+4x^3) \log x}{(1-x)^5} \xrightarrow{x \to1} 1 , \end{aligned}$$
(33)
$$\begin{aligned} f_9^\text{box}(x,y) =& \frac{12(x-2y+xy)}{(1-x)(y-x)(1-y)^2} - \frac {12x^2 \log x}{(1-x)^2(x-y)^2} \\ &{} + \frac{12 y(2x-y+y^2)\log y}{(x-y)^2(1-y)^3} \xrightarrow{x,y \to1} 1 . \end{aligned}$$
(34)

The loop functions that are relevant for the MSSM contributions to the dipole coefficients C 7 and \(C_{7}^{\prime}\) read

$$\begin{aligned} &{f_7^{H^\pm}(x) = \frac{3(5x-3)}{7(1-x)^2} + \frac{6(3x-2)}{7(1-x)^3} \log x \xrightarrow{x \to1} 1 ,} \end{aligned}$$
(35)
$$\begin{aligned} &{f_7^{\tilde{H}^\pm}(x) = \frac{6(7x-13)}{5(1-x)^3} + \frac {12(2x^2-2x-3)}{5(1-x)^4} \log x \xrightarrow{x \to1} 1 ,} \end{aligned}$$
(36)
$$\begin{aligned} &{f_7^{\tilde{g}}(x) = \frac{10(1+10x+x^2)}{(1-x)^4}} \\ &{\phantom{f_7^{\tilde{g}}(x) =}{}+ \frac {60x(1+x)}{(1-x)^5} \log x \xrightarrow{x \to1} 1 .} \end{aligned}$$
(37)

The function entering the Higgs-loop contribution to C 7 and \(C_{7}^{\prime}\) in models with partial compositeness reads

$$ f_7^h(x) = \frac{x(x^2-4 x+2 \log(x)+3)}{(x-1)^3} \xrightarrow{x\to \infty} 1 . $$
(38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmannshofer, W., Straub, D.M. New physics in BK μμ?. Eur. Phys. J. C 73, 2646 (2013). https://doi.org/10.1140/epjc/s10052-013-2646-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2646-9

Keywords

Navigation