Skip to main content
Log in

Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper reports on the dynamical analysis, field programmable gate array (FPGA) implementation of autonomous Josephson junction (JJ) jerk oscillator with cosine interference term (AJJJOCIT) and investigation of its collective behavior in a network. The AJJJOCIT derived from a resistive capacitive shunted JJ model with cosine interference term has two or no equilibrium points as a function of direct current (DC). One of the equilibrium points is unconditionally unstable and the other equilibrium point has a Hopf bifurcation where its expression depends on DC and coherence parameters. One-scroll self-excited chaotic attractor, one-scroll chaotic hidden attractor, steady state attractors, bistable periodic attractors, limit cycle and coexistence between periodic and one-scroll chaotic self-excited (or hidden) attractors are revealed in the AJJJOCIT during the numerical analysis. Moreover, the FPGA of AJJJOCIT is implemented and the FPGA results are qualitatively the same as those obtained during the numerical analysis. Finally, the collective dynamics of the AJJJOCIT are studied using a single-layer matrix of the AJJJOCIT. It is demonstrated that chimera states exist in the system and when increasing coupling strength, a completely synchronized network is revealed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the information was given in the paper to generate the results in the paper; there is no need for the deposited data].

References

  1. H.P.W. Gottlieb, What is the simplest Jerk function that gives chaos? Am. J. Phys. 64, 525–529 (1996)

    Article  ADS  Google Scholar 

  2. J.C. Sprott, Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  ADS  Google Scholar 

  3. J.M. Malasoma, What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264, 383–389 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.C. Sprott, A new chaotic Jerk circuit. IEEE Trans. Circuits Syst. II Express Briefs 58, 240–243 (2011)

    Article  Google Scholar 

  5. S. Benitez, L. Acho, R.J.R. Guerra, Chaotification of the Van der Pol system using jerk architecture. IEICE Trans. Fundam. 89, 1088–1091 (2006)

    Article  Google Scholar 

  6. P. Louodop, M. Kountchou, H.B.S. FotsinBowong, Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597–607 (2014)

    Article  MathSciNet  Google Scholar 

  7. J. Kengne, Z. Njitacke, H.B. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    Article  MathSciNet  Google Scholar 

  8. V. Kamdoum Tamba, S. Takougang Kingni, G. Fotso Kuiate, H. Fotsin, P.K. Talla, Coexistence of attractors in autonomous Van der Pol-Duffing jerk oscillator: analysis, chaos control and synchronisation in its fractional-order form. Pramana J. Phys. 91, 1–12 (2018)

    Google Scholar 

  9. V. Kamdoum Tamba, G. Fautso Kuiate, S. Takougang Kingni, P.K. Talla, An autonomous Helmholtz like-jerk oscillator: analysis, electronic circuit realization and synchronization issues. Nonlinear Dyn. Syst. Self-excited Hidden Attractors Stud. Syst. Decis. Control 133, 203–227 (2018)

    MathSciNet  MATH  Google Scholar 

  10. C. Ainamon, S.T. Kingni, V.K. Tamba, J. Bio-Chabi-Orou, P. Woafo, Dynamics, circuitry implementation and control of an autonomous Helmholtz jerk oscillator. J. Control Autom. Electr. Syst. 30, 501–511 (2019)

    Article  Google Scholar 

  11. K.S. Takougang, G. Fautso Kuiate, V. Kamdoum Tamba, V. Thanh Pham, D. Vo Hoang, Self-excited and hidden attractors in an autonomous Josephson jerk oscillator: analysis and its application to text encryption. J. Comput. Nonlinear Dyn. 14, 071004–071012 (2019)

    Article  Google Scholar 

  12. Y. Li, Y. Zeng, J.A. Zeng, Unique jerk system with abundant dynamics: symmetric or asymmetric bistability, tristability and coexisting bubbles. Braz J. Phys. 50, 153–163 (2020)

    Article  ADS  Google Scholar 

  13. L. Kamdjeu Kengne, H.T. Kamdem Tagne, J.R. Mboupda Pone, J. Kengne, Dynamics, control and symmetry-breaking aspects of a new chaotic Jerk system and its circuit implementation. Eur. Phys. J. Plus 135, 340–377 (2020)

    Article  Google Scholar 

  14. G.H. Kom, L.P. Nguemkoua-Nguenjou, C. Ainamon, S.T. Kingni, Theoretical and experimental investigations of a jerk circuit with two parallel diodes. Chaos Theory Appl. 2, 52–57 (2020)

    Google Scholar 

  15. K. Rajagopal, S.T. Kingni, G.H. Kom, V.-T. Pham, A. Karthikeyan, S. Jafari, Self-excited and hidden attractors in a simple chaotic jerk system and in its time-delayed form: analysis, electronic implementation, and synchronization. J. Korean Phys. Soc. 76, 1–8 (2020)

    Google Scholar 

  16. C. Ainamon, V. Kamdoum Tamba, J.R. Mboupda Pone, S. Takougang Kingni, H. Boudoue Malwe, J. Bio Chabi Orou, Analysis, circuit realization and controls of an autonomous Morse jerk oscillator. SeMA J. (2021). https://doi.org/10.1007/s40324-021-00241-6

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ramakrishnan, P.Y. Nkandeu Kamdeu, H. Natiq, J.R. Mboupda Pone, A. Karthikeyan, S. Takougang Kingni, A. Tiedeu, Image encryption with a Josephson junction model embedded in FPGA. Multim. Tools Appl. 81, 23819–23843 (2022)

    Article  Google Scholar 

  18. J. Ramadoss, I. Komofor Ngongiah, A. Cheage Chamgoué, J.R. Mboupda Pone, K. Rajagopal, S. Takougang Kingni, Josephson junction model with cosine interference term: analysis, microcontroller implementation, and network analysis. Phys. Scr. 96, 125232 (2021)

    Article  ADS  Google Scholar 

  19. N.F. Pedersen, K. Saermark, Analytical solution for a Josephson-junction model with capacitance. Physica 69, 572–578 (1973)

    Article  ADS  Google Scholar 

  20. Y. Yao, Josephson junction circuit model and its global bifurcation diagram. Phys. Lett. A 118, 4853–4859 (1986)

    Article  Google Scholar 

  21. V.N. Belykh, Shunted-Josephson-junction model. I. The autonomous case. Phys. Rev. B 16, 4853–4859 (1977)

    Article  ADS  Google Scholar 

  22. V.N. Belykh, Shunted–Josephson-junction model. II. The nonautonomous case. Phys. Rev. B 16, 4860–4871 (1977)

    Article  ADS  Google Scholar 

  23. M.F. Tolba, A.H. Elsafty, M. Armanyos, L.A. Said, A.H. Madian, A.G. Radwan, Synchronization and FPGA realization of fractional-order Izhikevich neuron model. Microelectron. J. 89, 56–69 (2019)

    Article  Google Scholar 

  24. M. Tuna, M. Alçın, I. Koyuncu, C.B. Fidan, I. Pehlivan, High speed FPGA-based chaotic oscillator design. Microprocess. Microsyst. 66, 72–80 (2019)

    Article  Google Scholar 

  25. K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization. Complexity 2017, 1892618 (2017)

    Article  MathSciNet  Google Scholar 

  26. K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan, S. Jafari, CAMO: self-excited and hidden chaotic flows. Int. J. Bifurc. Chaos 29, 1950143–1950159 (2019)

    Article  MathSciNet  Google Scholar 

  27. S. Sadoudi, M.S. Azzaz, M. Djeddou, M. Benssalah, An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. Int. J. Nonlinear Sci. 7, 467–474 (2009)

    MathSciNet  MATH  Google Scholar 

  28. L. Ávalos-Ruiz, C. Zúñiga-Aguilar, J. Gómez-Aguilar, R. Escobar-Jiménez, H. Romero-Ugalde, FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law. Chaos Solitons Fractals 115, 177–189 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Chen et al., A multistable chaotic jerk system with coexisting and hidden attractors: dynamical and complexity analysis, FPGA based realization, and chaos stabilization using a robust controller. Symmetry 12, 569–588 (2020)

    Article  ADS  Google Scholar 

  30. B. Karakaya, A. Gülten, M. Frasca, A true random bit generator based on a memristive chaotic circuit: analysis, design and FPGA implementation. Chaos Solitons Fractals 119, 143–149 (2019)

    Article  ADS  Google Scholar 

  31. A. Karthikeyan, K. Rajagopal, FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronizations. Pramana 90, 14–26 (2018)

    Article  ADS  Google Scholar 

  32. Q. Ding, J. Pang, J. Fang, X. Peng, Designing of chaotic system output sequence circuit based on FPGA and its applications in network encryption card. Int. J. Innov. Comput. Inf. Control 3, 449–456 (2007)

    Google Scholar 

  33. K. Rajagopal, L. Guessas, S. Vaidyanathan, A. Karthikeyan, A.K. Srinivasan, Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control. Math. Probl. Eng. 2017, 7307452 (2017)

    Article  MathSciNet  Google Scholar 

  34. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87, 2281–2304 (2017)

    Article  Google Scholar 

  35. B. Ramakrishnan, R. Ramamoorthy, C. Li, A. Akgul, K. Rajagopal, Spiral waves in a lattice array of Josephson junction chaotic oscillators with flux effects. Math. Probl. Eng. 2021, 8848914 (2021). https://doi.org/10.1155/2021/8848914

    Article  MathSciNet  Google Scholar 

  36. A. Karthikeyan, K. Rajagopal, Network dynamics of a fractional-order phase-locked loop with infinite coexisting attractors. Complexity 2020, 7902474 (2020). https://doi.org/10.1155/2020/7902474

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Contributions

BR and VKT developed the model and theoretically analyzed the rate equations of the proposed model. AK and HN did the digital implementation of the proposed model. ASKT participated in the data analysis at different stages. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Victor Kamdoum Tamba.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, B., Tamba, V.K., Natiq, H. et al. Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network. Eur. Phys. J. B 95, 145 (2022). https://doi.org/10.1140/epjb/s10051-022-00398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00398-7

Navigation