Skip to main content
Log in

FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A new fourth-order memristor chaotic oscillator is taken to investigate its fractional-order discrete synchronisation. The fractional-order differential model memristor system is transformed to its discrete model and the dynamic properties of the fractional-order discrete system are investigated. A new method for synchronising commensurate and incommensurate fractional discrete chaotic maps are proposed and validated. Numerical results are established to support the proposed methodologies. This method of synchronisation can be applied for any fractional discrete maps. Finally the fractional-order memristor system is implemented in FPGA to show that the chaotic system is hardware realisable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T Geisel, Nature 298, 322 (1982)

    Article  ADS  Google Scholar 

  2. O E Rössler, Phys. Lett. A 71, 155 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  3. E N Lorentz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  4. G Chen and T Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)

    Article  Google Scholar 

  5. C X Liu, T Liu, L Liu and K Liu, Chaos Solitons Fractals 22, 1031 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. V Sundarapandian and I Pehlivan, Math. Comput. Model 55, 1904 (2012)

    Article  Google Scholar 

  7. V Sundarapandian, J. Eng. Sci. Technol. Rev.6, 45 (2013)

    Google Scholar 

  8. V T Pham, C Volos, S Jafari, Z Wei and X Wang, Int. J. Bifurc. Chaos 24, 1450073 (2014)

    Article  Google Scholar 

  9. V Sundarapandian and C Volos, Arch. Control Sci. 25(3), 333 (2015)

    MathSciNet  Google Scholar 

  10. L O Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  11. L Chua and S M Kang, Proc. IEEE 64(2), 209 (1976)

    Article  MathSciNet  Google Scholar 

  12. Z Biolek, D Biolek and V Biolková, Radioengineering 18(2), 210 (2009)

    Google Scholar 

  13. Robinson E Pino and Kristy A Campbell, Proceeding of the International Symposium on Nanoscale Architecture (2010) pp. 1–4

  14. Rak and G Cserey, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632 (2010)

  15. A Ishaq Ahamed and M Lakshmanan, Int. J. Bifurc. Chaos 23 (2013)

  16. Shibing Wang, X Wang, Y Zhou and B Han, Entropy 18, 58 (2016), https://doi.org/10.3390/e18020058

    Article  ADS  Google Scholar 

  17. B A Idowu, U E Vincent and A N Njah, Chaos Solitons Fractals 39, 2322 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. S Vaidyanathan and K Rajagopal, Int. J. Syst. Signal Control Eng. Appl. 4, 55 (2011)

    Google Scholar 

  19. V Sundarapandian and R Karthikeyan, Eur. J. Sci. Res. 64, 94 (2011)

    Google Scholar 

  20. V Sundarapandian and R Karthikeyan, J. Eng. Appl. Sci. 7, 45 (2012)

    Google Scholar 

  21. Sajjad Shoja Majidabad and Heydar Toosian Shandiz, J. Control Syst. Eng.1(1), 1 (2013)

  22. A N Njah, Nonlinear Dyn.61(1–2), 1 (2010)

    Article  MathSciNet  Google Scholar 

  23. O S Onma, O I Olusola and A N Njah, Nonlinear Dyn. Article ID 861727, 15 pages, http://dx.doi.org/10.1155/2014/861727 (2014)

  24. B Wang, Y Li and D L Zhu, Int. J. Comput. Appl. 8(8), 425 (2015)

    Google Scholar 

  25. Chun Yin, Sara Dadras, Shou-ming Zhong and Yang Quan Chen, Appl. Math. Model.37(4), 2469 (2013)

  26. Haorui Liu and Juan Yang, Entropy17, 4202 (2015)

    Article  ADS  Google Scholar 

  27. S Wang, Y Yu and M Diao, Physica A 389, 4981 (2010)

  28. Z Wanga, X Huang and H Shend, Neurocomputing 83, 83 (2012)

  29. Shaojuan Ma, Jie Zheng and Yuqin Li, J. Inf. Comput. Sci.11(10), 3469 (2014)

    Article  Google Scholar 

  30. R H Li and W S Chen, Chin. Phys. B22, 040503 (2013)

    Article  ADS  Google Scholar 

  31. I Petras, Chaos Solitons Fractals38, 140 (2008)

    Article  ADS  Google Scholar 

  32. A M A El-Sayed, Z F El-Raheem and S M Salman, Adv. Differ. Equ. Article ID: 2014-66 (2014)

  33. A M A El-Sayed and S M Salman, J. Frac. Calc. Appl. 4(2), 251 (2013)

    Google Scholar 

  34. D Baleanu, K Diethelm, E Scalas and J J Trujillo, Fractional calculus: Models and numerical methods (World Scientific, Singapore, 2014)

  35. Y Zhou, Basic theory of fractional differential equations (World Scientific, Singapore, 2014)

  36. K Diethelm, The analysis of fractional differential equations (Springer, Berlin, 2010)

  37. W Trzaska Zdzislaw, Matlab solutions of chaotic fractional-order circuits (Intech Open, 2014)

  38. B Bao, P Jiang, H Wu and F Hu, Nonlinear Dyn.79, 2333 (2015)

    Article  Google Scholar 

  39. K Rajagopal, S Vaidhyanathan, A Karthikeyan and P Duraisamy, Electr. Eng.99(2), 721 (2017)

    Article  Google Scholar 

  40. H K Khalil, Nonlinear systems (Prentice Hall, New York, 2002)

  41. K Rajagopal, L Guessas, A Karthikeyan, A Srinivasan and G Adam, Complexity https://www.hindawi.com/journals/complexity/2017/1892618/ (2017)

  42. K Rajagopal, A Karthikeyan and A K Srinivasan, Nonlinear Dyn.87(4), 2281 (2017)

    Article  Google Scholar 

  43. K Rajagopal, A Karthikeyan and A Srinivasan, Chaos Solitons Fractals103, 347 (2017)

  44. K Rajagopal, S Jafari and G Laarem, PramanaJ. Phys. (accepted)

  45. C Wang, R Chu and J Ma, Complexity21, 370 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. Y Jin, Y Q Chen and D Xue, IET Control Theory Appl. 5, 164 (2011)

    Article  Google Scholar 

  47. H Zhang, X Y Wang and X H Lin, Asian J. Control19, 106 (2017)

    Article  MathSciNet  Google Scholar 

  48. I Petráš, Fractional-order nonlinear systems: Modeling, analysis and simulation (Springer, 2011)

    Book  MATH  Google Scholar 

  49. U N Katugampola, Bull. Math. Anal. Appl.6, 1 (2014)

    MathSciNet  Google Scholar 

  50. M A Herzallah, J. Fract. Calc. Appl.5, 1 (2014)

    MathSciNet  Google Scholar 

  51. Y Li, Y Chen and I Podlubny, Comput. Math. Appl.59, 1810 (2010)

    Article  MathSciNet  Google Scholar 

  52. J A Gallegos and M A Duarte-Mermoud, Appl. Math. Comput.287, 161 (2016)

    MathSciNet  Google Scholar 

  53. M S Tavazoei and M Haeri, Phys. Lett. A372, 798 (2008)

    Article  ADS  Google Scholar 

  54. K Konishi, H Kokame and N Hara, Nonlinear Dyn.63, 513 (2011)

    Article  Google Scholar 

  55. D Chen, P Shi and X Ma, Int. J. Innov. Comput. Inf.8, 7237 (2012)

    Google Scholar 

  56. Jun Ma, Fuqiang Wu, Guodong Ren and Jun Tang, Phys. Lett. A298, 65 (2017)

    Google Scholar 

  57. Y Xu, H Ying, Y Jia, J Ma and T Hayat, Sci. Rep.7, 43452 (2017)

    Article  ADS  Google Scholar 

  58. Fuqiang Wu, Chunni Wang, Wuyin Jin and Jun Ma, Physica A469, 81 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  59. X Wang and Y He, Phys. Lett. A372(4), 435 (2008)

    Article  ADS  Google Scholar 

  60. X Wang, X Zhang and C Ma, Nonlinear Dyn.69(1–2), 511 (2012)

    Article  Google Scholar 

  61. X Wang, Y He and M Wang, Nonlinear Anal. Theory Methods Appl.71(12), 6126 (2009)

    Article  Google Scholar 

  62. C Luo and X Wang, Nonlinear Dyn.71(1–2), 241 (2013)

    Article  Google Scholar 

  63. X Wang and J M Song, Commun. Nonlinear Sci. Numer. Simul.14(8), 3351 (2009)

    Article  ADS  Google Scholar 

  64. X Wang and M Wang, Chaos 17, 033106 (2007)

    Article  ADS  Google Scholar 

  65. Y Zhanga and X Y Wang, Inf. Sci.273, 329 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, A., Rajagopal, K. FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations. Pramana - J Phys 90, 14 (2018). https://doi.org/10.1007/s12043-017-1507-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1507-8

Keywords

PACS No

Navigation