Skip to main content
Log in

Theoretical analysis of the structural, electronic, optical and thermodynamic properties of trigonal and hexagonal Cs3Sb2I9 compound

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, electronic, optical and thermodynamic properties of Cs3Sb2I9 compound with 0-D dimer form (hexagonal SP; P63∕mmc, no. 194) and the 2-D layered form (trigonal SP; P31, no. 164) phases have been investigated and reported using both FP-LAPW and PP-PW methods. Besides, the thermodynamic properties of the materials of interest have been studied using the quasi-harmonic Debye model accommodating the lattice vibrations effects. The obtained lattice parameters for dimer and layered phase reveal very good accord with experiment. The computed electronic band structures show that in the dimer phase the material of interest is an indirect band-gap (k–Γ) semiconductor, whereas it is a direct band-gap (Γ–Γ) in the layered phase. The semiconducting material Cs3Sb2I9 of interest was found to be stable against volume change of 0 to +14%. Moreover, the optical properties of the material in question are also examined and discussed. The effect of pressure and temperature on the studied properties is found to be highly effective in tuning some of the macroscopic properties of the compound in question.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)

    Article  ADS  Google Scholar 

  2. S.D. Stranks, H.J. Snaith, Nat. Nanotechnol. 10, 402 (2015)

    Article  Google Scholar 

  3. D.W. de Quilettes, S. M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, D.S. Ginger, Science 348, 683 (2015)

    Article  ADS  Google Scholar 

  4. R.X. Yang, K.T. Butler, A. Walsh, J. Phys. Chem. Lett. 6, 5014 (2015)

    Google Scholar 

  5. J. Lin et al., Nat. Mater. 17, 261 (2018)

    Article  ADS  Google Scholar 

  6. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, J.-E. Moser, Nat. Photonics 8, 250 (2014)

    Article  ADS  Google Scholar 

  7. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photonics 9, 106 (2014)

    Article  ADS  Google Scholar 

  8. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Nat. Photonics 8, 128 (2013)

    Article  ADS  Google Scholar 

  9. M. Saliba et al., Science 354, 206 (2016)

    Article  ADS  Google Scholar 

  10. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  11. Begum, R. Parida, M.R. Abdelhady, A.L. Murali, B. Alyami, N.M. Ahmed, G.H. Hedhili, M.N. Bakr, O.M. Mohammed, J. Am. Chem. Soc. 139, 731 (2017)

    Article  Google Scholar 

  12. M. Zirak, M. Zirak, M. Zirak, E. Moyen, H. Alehdaghi, A. Kanwat, W.-C. Choi, J. Jang, J. Am. Chem. Soc. 137, 10276 (2015)

    Article  Google Scholar 

  13. A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Science 354, 92 (2016)

    Article  ADS  Google Scholar 

  14. S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, Fiebig, M. Heiss, W. Kovalenko, M.V. Kovalenko, Nat. Commun. 6, 8056 (2015)

    Article  ADS  Google Scholar 

  15. I. Dursun, C. Shen, Parida, M.R. Pan, J. Sarmah, S.P. Priante, D. Alyami, N. Liu, J. Saidaminov, M.I. Alias, M.S. Abdelhady, A.L. Ng, T.K. Mohammed, O.F. Ooi, B.S. Bakr, O.M. Bakr, ACS Photonics 3, 1150 (2016)

    Article  Google Scholar 

  16. K. Tanakaa, T. Takahashia, T. Bana, T. Kondoa, K. Uchidab, N. Miura, Solid State Commun. 127, 619 (2003)

    Article  ADS  Google Scholar 

  17. M. Kim, J. Im, A.J. Freeman, J. Ihm, H. Jin, Proc. Natl. Acad. Sci. U.S.A. 111, 6900 (2014)

    Article  ADS  Google Scholar 

  18. Y. Han, R. Khenata, T. Yang, X. Wang, Results Phys. 13, 102301 (2019)

    Article  Google Scholar 

  19. T. Yang, R. Khenata, H. Khachai, X. Wang, Results Phys. 13, 102331 (2019)

    Article  Google Scholar 

  20. X. Wang, H. Khachai, R. Khenata, Superlatt. Microstruct. 130, 472 (2019)

    Article  ADS  Google Scholar 

  21. X. Wang, Z. Cheng, H. Khachai, R. Khenata, T. Yang, J. Solid State Chem. 276, 352 (2019)

    Article  ADS  Google Scholar 

  22. S. Berri, J. Magn. Magn. Mater. 385, 124 (2015)

    Article  ADS  Google Scholar 

  23. S. Berri, J. Sci.: Adv. Mater. Devices 3, 254 (2018)

    Google Scholar 

  24. S. Berri, N. Bouarissa, M. Attallah, J. Supercond. Nov. Magn. 33, 1737 (2020)

    Article  Google Scholar 

  25. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Nature 464, 262 (2010)

    Article  ADS  Google Scholar 

  26. L. Bai, Y. Xue, Z. Cui, Thermochim. Acta 658, 101 (2017)

    Article  Google Scholar 

  27. C.C. Rinzler, A. Allanore, Philos. Mag. 97, 561 (2017)

    Article  ADS  Google Scholar 

  28. K. Daviau, K.K.M. Lee, Crystals 8, 217 (2018)

    Article  Google Scholar 

  29. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  30. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K package, http://www.wien2k.at

  31. F. Tran, P. Blaha Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  32. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  34. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  35. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  36. M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 7 (2004)

    Article  ADS  Google Scholar 

  37. S. Berri, J. Sci.: Adv. Mater. Devices 4, 319 (2019)

    Google Scholar 

  38. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 3, 244 (1944)

    Article  ADS  Google Scholar 

  39. B. Chabot, E. Parthé, Acta Cryst. B 34, 645 (1978)

    Article  Google Scholar 

  40. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Chem. Mater. 27, 5622 (2015)

    Article  Google Scholar 

  41. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  42. A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, C.W. Chu, ACS Appl. Mater. Interfaces 10, 2566 (2018)

    Article  Google Scholar 

  43. K.M. McCall, C.C. Stoumpos, S.S. Kostina, M.G. Kanatzidis, Wessels, B.W. Strong, Chem. Mater. 29, 4129 (2017)

    Article  Google Scholar 

  44. A. Koliogiorgos, S. Baskoutas, I. Galanakis, Comput. Condens. Matter 14, 161 (2018)

    Article  Google Scholar 

  45. Y.L. Liu, C.L. Yang, M.S. Wang, X.-G. Ma, Y.-G. Yi , J. Mater. Sci. 54, 4732 (2019)

    Article  ADS  Google Scholar 

  46. A. Jain, O. Voznyy, E.H. Sargent. J. Phys. Chem. C 121, 7183 (2017)

    Article  Google Scholar 

  47. K.M. McCall et al., ACS Photonics 5, 3748 (2018)

    Article  Google Scholar 

  48. T. Geng, Z. Ma, Y. Chen, Y. Cao, P. Lv, N. Li, G. Xiao, Nanoscale 12, 1425 (2020)

    Article  Google Scholar 

  49. S. Berri, Chin. J. Phys. 55, 2476 (2017)

    Article  Google Scholar 

  50. S. Berri, D. Maouche, N. Bouarissa, Y. Medkour, Mater. Sci. Semicond. Process. 16, 1439 (2013)

    Article  Google Scholar 

  51. R. Saniz, L.-H. Ye, T. Shishidou, A.J. Freeman, Phys. Rev. B 74, 014209 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Berri.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berri, S. Theoretical analysis of the structural, electronic, optical and thermodynamic properties of trigonal and hexagonal Cs3Sb2I9 compound. Eur. Phys. J. B 93, 191 (2020). https://doi.org/10.1140/epjb/e2020-10143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10143-1

Keywords

Navigation