Skip to main content
Log in

DFT Study of Electronic, Optical, Thermoelectric, and Thermodynamic Properties of the HfO2 Material

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, our primary objective is to examine the effect of strain on the HfO2 compound, delving into its diverse array of physical attributes. Our investigation encompassed an exploration of its structural, electronic, optical, thermodynamic, and thermoelectric characteristics, both under tensile and compressive strain conditions. To undertake this research, we used the density functional theory (DFT) as implemented in the Wien2k software package. To pinpoint the exchange-correlation potential, we adopted the GGA-PBE (Perdew, Burke, and Ernzerhof) method. Our findings unequivocally establish that the HfO2 compound behaves as an insulator. Furthermore, we meticulously evaluated a wide spectrum of optical properties, encompassing electron energy loss, absorption coefficient, as well as the real and imaginary components of the dielectric tensors and optical conductivity. Additionally, we computed the Debye temperature and the Grüneisen parameter. In tandem with these investigations, we probed the electrical conductivity, Seebeck coefficient, and electronic conductivity. Notably, our results unveiled that the compound demonstrates p-type behavior, characterized by positive values for the Seebeck coefficient. These outcomes could be useful for the properties of the studied HfO2 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data are generated in this work.

References

  1. S. Fan, S. Singh, X. Xu, K. Park, Y. Qi, S.W. Cheong, D. Vanderbilt, K.M. Rabe, J.L. Musfeldt, Vibrational fingerprints of ferroelectric HfO2. Npj Quantum Mater. 7, 1 (2022)

    Article  Google Scholar 

  2. K. Kukli, J. Aarik, M. Ritala, T. Uustare, T. Sajavaara, J. Lu, J. Sundqvist, A. Aidla, L. Pung, A. Hårsta, M. Leskelä, Effect of selected atomic layer deposition parameters on the structure and dielectric properties of hafnium oxide films. J. Appl. Phys. 96, 5298 (2004)

    Article  ADS  Google Scholar 

  3. C. Künneth, R. Materlik, M. Falkowski, A. Kersch, Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric HfO2 from First-Principles: Implications for Ferroelectric Memory and Energy-Related Applications. ACS Appl. Nano Mater. 1, 254 (2018)

    Article  Google Scholar 

  4. S. Fang, C. Ma, W. Liu, J. He, C. Wang, G. Chen, D. Liu, R. Zhang, Effect of oxygen flow on the optical properties of hafnium oxide thin films by dual-ion beam sputtering deposition. Appl. Phys. A 128, 1097 (2022)

    Article  ADS  Google Scholar 

  5. D. Wernham, A. Piegari, Chapter 22 - Optical coatings in the space environment☆, in Opt. Thin Films Coat, 2nd edn., ed. by A. Piegari, F. Flory (Woodhead Publishing, 2018), p.789

    Chapter  Google Scholar 

  6. I.-J. Kim, J.-S. Lee, Ferroelectric Transistors for Memory and Neuromorphic Device Applications. Adv. Mater. 35, 2206864 (2023)

    Article  ADS  Google Scholar 

  7. Z. Li, T. Wang, Y. Liu, J. Yu, J. Meng, P. Liu, K. Xu, H. Zhu, Q. Sun, D.W. Zhang, L. Chen, Understanding the Effect of Oxygen Content on Ferroelectric Properties of Al-Doped HfO Thin Films. IEEE Electron Device Lett. 44, 56 (2023)

    Article  ADS  Google Scholar 

  8. A. Ramadoss, K. Krishnamoorthy, S.J. Kim, Facile synthesis of hafnium oxide nanoparticles via precipitation method. Mater. Lett. 75, 215 (2012)

    Article  Google Scholar 

  9. M.F. Al-Kuhaili, Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 27, 383 (2004)

    Article  ADS  Google Scholar 

  10. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendran, Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes. Phys. B Condens. Matter. 594, 412336 (2020)

    Article  Google Scholar 

  11. J.J. Low, N.H. Paulson, M. D’Mello, M. Stan, Thermodynamics of monoclinic and tetragonal hafnium dioxide (HfO2) at ambient pressure. Calphad 72, 102210 (2021)

    Article  Google Scholar 

  12. Q.-J. Hong, S.V. Ushakov, D. Kapush, C.J. Benmore, R.J.K. Weber, A. van de Walle, A. Navrotsky, Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2. Sci. Rep. 8, 14962 (2018)

    Article  ADS  Google Scholar 

  13. H. Zhang, H. Wei, H. Bao, Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study. J. Therm. Sci. 31, 1052 (2022)

    Article  ADS  Google Scholar 

  14. F. Gascoin, N. Raghavendra, E. Guilmeau, Y. Bréard, CdI2 structure type as potential thermoelectric materials: Synthesis and high temperature thermoelectric properties of the solid solution TiSxSe2−x. J. Alloys Compd. 521, 121 (2012)

    Article  Google Scholar 

  15. R. Kumar, A. Vij, M. Singh, Electronic, thermoelectric, and optical studies of cubic Hf1-xTixO2: An attempt to enhance the key parameters. J. Solid State Chem. 307, 122829 (2022)

    Article  Google Scholar 

  16. R. Kumar, R. Kumar, A. Vij, M. Singh, A first-principle study of electronic, thermoelectric, and optical properties of sulfur doped c-HfO2. Phys. Scr. 97, 075813 (2022)

    Article  ADS  Google Scholar 

  17. S. Benyoussef, R. Essajai, Y. El Amraoui, H. Ez-Zahraouy, Ab-initio calculations combined with Monte Carlo simulation of the physical properties of Fe3S4 compound. Chem. Phys. 548, 111233 (2021)

    Article  Google Scholar 

  18. A. Jabar, S. Benyoussef, L. Bahmad, A first principal study of the electronic, optic and thermoelectric properties of double perovskite K2CuRhX6 (X = Cl or I). Opt. Quant. Electron. 55, 839 (2023)

    Article  Google Scholar 

  19. A. Jabar, H. Labrim, L. Larbi, B. Jaber, S. Benyoussef, Study of physical properties of the new inorganic perovskites LiSnX3 (X= Br or I): A DFT approach. Mod. Phys. Lett. B 37, 2350098 (2023)

    Article  Google Scholar 

  20. S. Benyoussef, A. Jabar, L. Bahmad, Biaxial and Uniaxial Tensile Strains Effects on Electronic, Optical, and Thermoelectric Properties of ScBiTe3 Compound. Cryst. Res. Technol. (2023). https://doi.org/10.1002/crat.202300069

    Article  Google Scholar 

  21. A. Jabar, Y. Selmani, L. Bahmad, S. Benyoussef, First-principles calculations of physical properties of the tungsten dichalcogenides (WSe2 and WTe2). Chem. Pap. (2023). https://doi.org/10.1007/s11696-023-03104-8

    Article  Google Scholar 

  22. C. Hébert, Practical aspects of running the WIEN2k code for electron spectroscopy. Micron Oxf. Engl. 1993, 12 (2007)

    Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  25. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232 (2011)

    Article  ADS  Google Scholar 

  26. V. Tyuterev, N. Vast, Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38, 350 (2006)

    Article  Google Scholar 

  27. J. Garcia, A. Lino, L. Scolfaro, J. Leite, F. Valder, G.E. Farias Jr., Band Structure Derived Properties of HfO2 from First Principles Calculations. AIP Conf. Proc. 772, 189 (2005)

    Article  ADS  Google Scholar 

  28. A.F. Lima, M.V. Lalic, The usefulness of the first-principles calculations of optical properties of the materials and the type of information that can be accessed by them. Opt. Mater. X. 15, 100185 (2022)

    Google Scholar 

  29. N. Chelil, M. Sahnoun, Z. Benhalima, R. Larbi, S.M. Eldin, Insights into the relationship between ferroelectric and photovoltaic properties in CsGeI3 for solar energy conversion. RSC Adv. 13, 1955 (2023)

    Article  ADS  Google Scholar 

  30. B. Watts, Calculation of the Kramers-Kronig transform of X-ray spectra by a piecewise Laurent polynomial method. Opt. Express 22, 23628 (2014)

    Article  ADS  Google Scholar 

  31. J. Garai, Physics behind the Debye temperature. (2007). arXiv:physics/0703001

  32. N. Maaouni, A. Jabar, S. Benyoussef, N. Tahiri, L. Bahmad, Electronic, thermodynamic, optical, and thermoelectric properties of Sr2RuO4 compound: Ab-initio principle. Opt. Quantum Electron. 56, 679 (2024)

    Article  Google Scholar 

  33. S. Benyoussef, A. Jabar, L. Bahmad, The Physical Properties of the Half-Heusler MnCoBi Compound: DFT and Monte Carlo Studies. J. Inorg. Organomet. Polym. Mater. (2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. B. and A. J. conceived of the presented idea. L. B. supervised the findings of this work. N. T. and L. B. verified the analytical methods. S. B. and A. J. developed the theory and performed the computations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyoussef, S., Jabar, A., Tahiri, N. et al. DFT Study of Electronic, Optical, Thermoelectric, and Thermodynamic Properties of the HfO2 Material. Braz J Phys 54, 83 (2024). https://doi.org/10.1007/s13538-024-01459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01459-1

Keywords

Navigation