Skip to main content
Log in

Efficient computation of Kubo conductivity for incommensurate 2D heterostructures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We introduce a numerical method for computing conductivity via the Kubo formula for incommensurate 2D bilayer heterostructures using a tight-binding framework. We begin by deriving the momentum space formulation and Kubo formula from the real space tight-binding model using the appropriate Bloch transformation operator. We further discuss the resulting algorithm along with its convergence rate and computational cost in terms of model parameters such as relaxation time and temperature. In particular, we show that for low frequencies, low temperature, and long relaxation times conductivity can be computed very efficiently using the momentum space algorithm for a wide class of materials. We then showcase our method by computing conductivity for twisted bilayer graphene (tBLG) for small twist angles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018)

    Article  ADS  Google Scholar 

  2. S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, E. Kaxiras, Phys. Rev. B 95, 075420 (2017)

    Article  ADS  Google Scholar 

  3. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Ann. Rev. Mater. Res. 45, 1 (2015)

    Article  ADS  Google Scholar 

  6. E. Cancès, P. Cazeaux, M. Luskin, J. Math. Phys. 58, 063502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Massatt, M. Luskin, C. Ortner, Multiscale Model. Simul. 15, 476 (2017)

    Article  MathSciNet  Google Scholar 

  8. S. Etter, D. Massatt, M. Luskin, C. Ortner, arXiv:1907.01314 (2019)

  9. R. Bistritzer, A.H. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011)

    Article  ADS  Google Scholar 

  10. G. Catarina, B. Amorim, E.V. Castro, J.M.V.P. Lopes, N. Peres, Twisted Bilayer Graphene: Low?Energy Physics, Electronic and Optical Properties, inHandbook of Graphene Set, edited by E. Celasco, A.N. Chaika, T. Stauber, M. Zhang, C. Ozkan, C. Ozkan, U. Ozkan, B. Palys, S.W. Harun (2019), doi:https://doi.org/10.1002/9781119468455.ch44

  11. D. Massatt, S. Carr, M. Luskin, C. Ortner, SIAM J. Multiscale Model. Simul. 16, 429 (2018)

    Article  Google Scholar 

  12. T. Stauber, P. San-Jose, L. Brey, New J. Phys. 15, 113050 (2013)

    Article  ADS  Google Scholar 

  13. P. Moon, Y.W. Son, M. Koshino, Phys. Rev. B 90, 155427 (2014)

    Article  ADS  Google Scholar 

  14. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  15. H.A. Le, V.N. Do, Phys. Rev. B 97, 125136 (2018)

    Article  ADS  Google Scholar 

  16. A. Vela, M.V.O. Moutinho, F.J. Culchac, P. Venezuela, R.B. Capaz, Phys. Rev. B 98, 155135 (2018)

    Article  ADS  Google Scholar 

  17. S. Carr, D. Massatt, S.B. Torrisi, P. Cazeaux, M. Luskin, E. Kaxiras, Phys. Rev. B, 98, 224102 (2018)

    Article  ADS  Google Scholar 

  18. H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S.H. Sung, R. Hovden, A.W. Tsen, T. Taniguchi et al., Nat. Mater. 18, 448 (2019)

    Article  ADS  Google Scholar 

  19. P. Cazeauz, M. Luskin, D. Massatt, Arch. Rat. Mech. Anal. 235, 1289 (2019)

    Article  Google Scholar 

  20. C. Mora, N. Regnault, B.A. Bernevig, Phys. Rev. Lett. 123, 026402 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Luskin.

Additional information

Contribution to the Topical Issue “Advances in Quasi-Periodic and Non-Commensurate Systems”, edited by Tobias Stauber and Sigmund Kohler.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massatt, D., Carr, S. & Luskin, M. Efficient computation of Kubo conductivity for incommensurate 2D heterostructures. Eur. Phys. J. B 93, 60 (2020). https://doi.org/10.1140/epjb/e2020-100518-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100518-7

Navigation