Skip to main content
Log in

Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Structural and dielectric properties of Potassium Lithium Niobate polycrystalline ceramic K3Li2Nb5O15 (KLN), having the tetragonal tungsten bronze (TTB) – type structure are studied in the temperature interval 50−550 °C. Special emphasis is given to the diffuse phase transition occurring around 440 °C. Space charge polarization, relaxation phenomena and free charge conductivity have been elucidated using impedance spectroscopy technique. Argand plots have revealed a non Debye and polydispersive type relaxation. In paraelectric phase the Arrhenius activation energy E τ  = 0.533 eV was determined. The structural and dielectric results are compared with two others TTB compounds derived from KLN family: Pb1.85K1.15Li0.15Nb5O15 (PKLN) and GdK2Nb5O15 (GKN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Soo Kim et al., J. Korean Phys. Soc. 32, 316 (1998)

    Google Scholar 

  2. T. Tsurumi, K. Soejima, T. Kamiya, M. Daimon, Jpn J. Appl. Phys. 33, 1959 (1994)

    Article  ADS  Google Scholar 

  3. Yuheng Xu, Wusheng Xu, Shiwen Xu, Rui Wang, Xiaojun Chen, Optik 114, 81 (2003)

    Article  ADS  Google Scholar 

  4. M. Adachia et al., Landolt-Börnstein (Springer, Berlin, Heidelberg, 1981), Vols. III/3, III/9

  5. Agnes Péter et al., J. Alloys Compd. 463, 398 (2008)

    Article  Google Scholar 

  6. J. Ravez, B. Elouadi, Mater. Res. Bull. 19, 1249 (1975)

    Article  Google Scholar 

  7. J. Thoret, J. Ravez, Rev. Chim. Minerale T 24, 288 (1987)

    Google Scholar 

  8. A. Zegzouti, M. Elaatmani, Sil. Ind. 62, 149 (1997)

    Google Scholar 

  9. A. Zegzouti, A. Abalhassain, M. Elaatmani, J. Phys. III France 6, 727 (1996)

    Article  Google Scholar 

  10. M. Cochez et al., J. Alloys Compd. 386, 238 (2005)

    Article  Google Scholar 

  11. E. Choukri et al., Eur. Phys. J. Appl. Phys. 53, 20901 (2011)

    Article  ADS  Google Scholar 

  12. Y. Amira, thesis, University Cadi Ayyad 2010, p. 85

  13. J. Rodrigues-Carvajal, Program Fullprof (2009)

  14. L.G. Van Uitert et al., Mat. Res. Bull. 3, 47 (1968)

    Article  Google Scholar 

  15. M. El Marssi et al., J. Appl. Phys. 83, 5371 (1998)

    Article  ADS  Google Scholar 

  16. K. Sambasiva Rao et al., Physica B 403, 2079 (2008)

  17. F. De Guerville, M. El Marssi, I. Luk’yanchuk, L. Lahoche, Ferroelectrics 359, 14 (2007)

    Article  Google Scholar 

  18. G. Pascoli L. Lahoche, I. Luk’yanchuk, Integrated Ferroelectrics 99, 60 (2008)

    Article  Google Scholar 

  19. M. Prades, H. Beltrán, N. Masó, E. Cordoncillo, A.R. West, J. Appl. Phys. 104, 104118 (2008)

    Article  ADS  Google Scholar 

  20. X.L. Zhu, X.M. Chen, X.Q. Liu, X.G. Li, J. Appl. Phys. 105, 124110 (2009)

    Article  ADS  Google Scholar 

  21. X.L. Zhu, X.M. Chen, Appl. Phys. Lett. 96, 032901 (2010)

    Article  ADS  Google Scholar 

  22. K. Sambasiva Rao et al., Int. J. Mod. Phys. B 21, 931 (2007)

    Article  ADS  Google Scholar 

  23. T.R. Shrout, L.E. Cross, D.A. Hukin, Ferroelectr. Lett. 44, 325 (1983)

    Article  Google Scholar 

  24. F.G. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, 1962)

  25. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  ADS  Google Scholar 

  26. K. Sambasiva Rao et al., Mater. Sci. Eng. B 133, 141 (2006)

    Google Scholar 

  27. T.A. Nealon, Ferroelectrics 76, 377 (1987)

    Article  Google Scholar 

  28. L. Zhigao, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57, 235 (1992)

    Article  Google Scholar 

  29. A.K. Jonscher, R.M. Hill, C. Pickup, J. Mater. Sci. 20, 4431 (1985)

    Article  ADS  Google Scholar 

  30. S.H. Kim, M.S. Jang, Y.S. Yang, H.J. Kimand, N.Y. Ryu, Ferroelectrics 196, 261 (1997)

    Article  Google Scholar 

  31. Chen Ang, Zhi Jing, Zhi Yu, J. Phys.: Condens. Matter 14, 8901 (2002)

    Article  ADS  Google Scholar 

  32. Yu Zhi, Ang Chen, Guo Ruyan, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002)

    Article  Google Scholar 

  33. I.A. Santos, D. Garcia, J.A. Eiras, J. Appl. Phys. 93, 1701 (2003)

    Article  ADS  Google Scholar 

  34. V.V. Kirilov, V.A. Isupov, Ferroelectrics 5, 3 (1973)

    Article  Google Scholar 

  35. D. Kajewski, Z. Ujma, J. Phys. Chem. Sol., 71, 24 (2010)

    Article  ADS  Google Scholar 

  36. M.A.L. Nobre, S. Lanfredi, Mater. Lett. 50, 322 (2001)

    Article  Google Scholar 

  37. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 62, 1999 (2001)

    Article  ADS  Google Scholar 

  38. M.A.L. Nobre, S. Lanfredi, Mater. Lett. 47, 362 (2001)

    Article  Google Scholar 

  39. A.R. James, S. Balaji, S.B. Krupanidhi, Mater. Sci. Eng. B 64, 149 (1999)

    Article  Google Scholar 

  40. J.R. MacDonald, W.B. Johnson, Impedance Spectroscopy (John Wiley & Sons, New York)

  41. R. El Moznine et al., J. Phys. D 36, 330 (2003)

    Article  ADS  Google Scholar 

  42. M. Ram, Solid State Commun. 149, 1226 (2009)

    Article  ADS  Google Scholar 

  43. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gagou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belboukhari, A., Abkhar, Z., Gagou, Y. et al. Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B 85, 215 (2012). https://doi.org/10.1140/epjb/e2012-21000-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-21000-1

Keywords

Navigation