Skip to main content
Log in

The Hubbard model with intersite interaction within the Composite Operator Method

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study the one- and two-dimensional extended Hubbard model by means of the Composite Operator Method within the 2-pole approximation. The fermionic propagator is computed fully self-consistently as a function of temperature, filling and Coulomb interactions. The behaviors of the chemical potential (global indicator) and of the double occupancy and nearest-neighbor density-density correlator (local indicators) are analyzed in detail as primary sources of information regarding the instability of the paramagnetic (metal and insulator) phase towards charge ordering driven by the intersite Coulomb interaction. Very rich phase diagrams (multiple first and second order phase transitions, critical points, reentrant behavior) have been found and discussed with respect to both metal-insulator and charge ordering transitions: the connections with the experimental findings relative to some manganese compounds are analyzed. Moreover, the possibility of improving the capability of describing cuprates with respect to the simple Hubbard model is discussed through the analysis of the Fermi surface and density of states features. We also report about the specific heat behavior in presence of the intersite interaction and the appearance of crossing points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Varma, Sol. Stat. Comm. 62, 681 (1987)

    Article  Google Scholar 

  2. P. Littlewood, C. Varma, E. Abrahams, Phys. Rev. Lett. 63, 2602 (1989)

    Article  Google Scholar 

  3. C. Varma, Phys. Rev. Lett. 75, 898 (1995)

    Article  Google Scholar 

  4. A. Janner, Phys. Rev. B 52, 17158 (1995)

    Article  Google Scholar 

  5. J. van den Brink et al. , Phys. Rev. Lett. 75, 4658 (1995)

    Article  Google Scholar 

  6. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963); J. Hubbard, Proc. Roy. Soc. A 277, 237 (1964); 281, 401 (1964); J. Hubbard, Proc. Roy. Soc. A 285, 542 (1965)

    Google Scholar 

  7. J. van den Brink, R. Eder, G. Sawatzky, Europhys. Lett. 37, 471 (1997)

    Article  Google Scholar 

  8. M. Simón, A. Aligia, E. Gagliano, Phys. Rev. B 56, 5637 (1997)

    Article  Google Scholar 

  9. J. Ferrer, M. Gonzáles-Alvarez, J. Sanchez-Canizares, Phys. Rev. B 57, 7470 (1998)

    Article  Google Scholar 

  10. E. Wigner, Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  11. P. Fulde, Ann. Phys. 6, 178 (1997)

    Google Scholar 

  12. E.Y. Andrei et al. , Phys. Rev. Lett. 60, 2765 (1988)

    Article  Google Scholar 

  13. A. Ochiai, T. Suzuki, T. Kasuya, J. Phys. Soc. Jpn 59, 4129 (1990)

    Google Scholar 

  14. C.H. Chen, S.W. Cheong, Phys. Rev. Lett. 76, 4042 (1996)

    Article  Google Scholar 

  15. T. Ohama et al. , Phys. Rev. B 59, 3299 (1999)

    Article  Google Scholar 

  16. M. Vojta et al. , Phys. Rev. B 62, 6721 (2000)

    Google Scholar 

  17. M. Salamon et al. , Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  18. S.K. Park et al. , Phys. Rev. B 58, 3717 (1998)

    Article  Google Scholar 

  19. Y. Ueda et al. , J. All. Comp. 317, 109 (2001)

    Article  Google Scholar 

  20. D.S. Chow et al. , Phys. Rev. Lett. 85, 1698 (2000)

    Article  Google Scholar 

  21. H. Seo, H. Fukuyama, J. Phys. Soc. Jpn 67, 2602 (1998)

    Google Scholar 

  22. P.V. Dongen, Phys. Rev. B 50, 14016 (1994)

    Article  Google Scholar 

  23. R. Pietig, R. Bulla, S. Blawid, Phys. Rev. Lett. 82, 4046 (1999)

    Article  Google Scholar 

  24. R.H. McKenzie et al. , Phys. Rev. B 64, 085109 (2001)

    Article  Google Scholar 

  25. J. Merino, R.H. McKenzie, Phys. Rev. Lett. 87, 237002 (2001)

    Article  Google Scholar 

  26. A. Hoang, P. Thalmeier, J. Phys.: Condens. Matter 14, 6639 (2002)

    Article  Google Scholar 

  27. J. Hirsch, Phys. Rev. Lett. 53, 2327 (1984)

    Article  Google Scholar 

  28. C. Hellberg, J. Appl. Phys. 89, 6627 (2001)

    Article  Google Scholar 

  29. M. Calandra, J. Merino, R.H. McKenzie, Phys. Rev. B 66, 195102 (2002)

    Article  Google Scholar 

  30. F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003)

    Article  Google Scholar 

  31. F. Mancini, A. Avella (2004), A review on the Hubbard model within the equations of motion approach, to be published in Adv. Phys.

  32. Y. Tomioka et al. , J. Phys. Soc. Jpn 66, 302 (1997)

    Google Scholar 

  33. T. Chatterji et al. , Phys. Rev. B 61, 570 (2000)

    Article  Google Scholar 

  34. J. Dho et al. , J. Phys.: Condens. Matter 13, 3655 (2001)

    Article  Google Scholar 

  35. J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 29, 5554 (1984)

    Article  Google Scholar 

  36. V. Emery, in Highly Conducting One-Dimensional Solids, edited by J. Devreese, R. Evrand, V. van Doren (Plenum Press, New York, 1979), p. 247

  37. V. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  Google Scholar 

  38. F. Zhang, T. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  Google Scholar 

  39. L.M.D. Bosch, L. Falicov, Phys. Rev. B 37, 6073 (1988)

    Article  Google Scholar 

  40. Y. Zhang, J. Callaway, Phys. Rev. B 39, 9397 (1989)

    Article  Google Scholar 

  41. X.-Z. Yan, Phys. Rev. B 48, 7140 (1993)

    Article  Google Scholar 

  42. A. Avella, S. Krivenko, F. Mancini, N. Plakida, J. Magn. Magn. Mater. 272, 456 (2004)

    Article  Google Scholar 

  43. H. Matsumoto, T. Saikawa, F. Mancini, Phys. Rev. B 54, 14445 (1996)

    Article  Google Scholar 

  44. H. Matsumoto, F. Mancini, Phys. Rev. B 55, 2095 (1997)

    Article  Google Scholar 

  45. F. Mancini, S. Marra, H. Matsumoto, Physica C 252, 361 (1995)

    Article  Google Scholar 

  46. A. Avella, F. Mancini, M. Sánchez-Lopez, D. Villani, F.D. Buzatu, J. Phys. Studies 2, 228 (1998)

    Google Scholar 

  47. M. Sánchez-Lopez, A. Avella, F. Mancini, Europhys. Lett. 44, 328 (1998)

    Article  Google Scholar 

  48. M. Sánchez-Lopez, A. Avella, F. Mancini, Physica B 259, 753 (1999)

    Google Scholar 

  49. A. Avella, F. Mancini, M. Sánchez-Lopez, Eur. Phys. J. B 29, 399 (2002)

    Article  Google Scholar 

  50. F. Mancini, S. Marra, H. Matsumoto, Physica C 244, 49 (1995)

    Article  Google Scholar 

  51. F. Mancini, S. Marra, H. Matsumoto, Physica C 250, 184 (1995)

    Article  Google Scholar 

  52. A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Y. Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)

    Article  Google Scholar 

  53. A. Avella, F. Mancini, M. Sánchez-Lopez, J. Phys. Studies 2, 232 (1998)

    Google Scholar 

  54. F. Mancini, H. Matsumoto, D. Villani, J. Phys. Studies 3, 474 (1999)

    Google Scholar 

  55. J. Cannon, R. Scalettar, E. Fradkin, Phys. Rev. B 44, 5995 (1991)

    Article  Google Scholar 

  56. G. Japaridze, A. Kampf, Phys. Rev. B 59, 12822 (1999)

    Article  Google Scholar 

  57. M. Nakamura, Phys. Rev. B 61, 16377 (2000)

    Article  Google Scholar 

  58. M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)

    Article  Google Scholar 

  59. P. Sengupta, A. Sandvik, D. Campbell, Phys. Rev. B 65, 155113 (2002)

    Article  Google Scholar 

  60. E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002)

    Article  Google Scholar 

  61. M. Nakamura, J. Phys. Soc. Jpn 68, 3123 (1999)

    Google Scholar 

  62. F. Mancini, Europhys. Lett. 50, 229 (2000)

    Article  Google Scholar 

  63. B. Chattopadhyay, D. Gaitonde, Phys. Rev. B 55, 15364 (1997)

    Article  Google Scholar 

  64. A. Avella, F. Mancini, D. Villani, Sol. Stat. Comm. 108, 723 (1998)

    Article  Google Scholar 

  65. R. Markiewicz, J. Phys. Chem. Sol. 58, 1179 (1997)

    Article  Google Scholar 

  66. J. Torrance, A. Bezinge, A. Nazzal, T. Huang, S. Parkin, D. Keane, S. LaPlaca, P. Horn, G. Held, Phys. Rev. B 40, 8872 (1989)

    Article  Google Scholar 

  67. D. Johnston, Phys. Rev. Lett. 62, 957 (1989)

    Article  Google Scholar 

  68. J. Loram et al. , Physica C 162, 498 (1989)

    Google Scholar 

  69. N. Wada, T. Obana, Y. Nakamura, K. Kumagai, Physica B 16,5-166, 1341 (1990)

    Google Scholar 

  70. J.W. Loram et al. , Phys. Rev. Lett. 71, 1740 (1993)

    Article  Google Scholar 

  71. J. Loram et al. , Physica C 23,5-240, 134 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Avella.

Additional information

Received: 2 July 2004, Published online: 12 October 2004

PACS:

71.10.-w Theories and models of many-electron systems - 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.27. + a Strongly correlated electron systems; heavy fermions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, A., Mancini, F. The Hubbard model with intersite interaction within the Composite Operator Method. Eur. Phys. J. B 41, 149–162 (2004). https://doi.org/10.1140/epjb/e2004-00304-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00304-9

Keywords

Navigation