Skip to main content
Log in

Attractive Hubbard Within the Generalized DMFT: Normal State Properties, Disorder Effects and Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the generalized DMFT+ Σ approach, we have studied disorder influence on the density of states, optical conductivity of the normal phase, superconducting transition temperature, and Ginzburg–Landau coefficients in the attractive Hubbard model. The wide range of attractive potentials U was studied—from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong coupling region, where superconducting transition is due to the Bose–Einstein condensation (BEC) of preformed Cooper pairs. For semi-elliptic “bare” density of states of conduction band, the disorder influence on all single-particle properties (e.g., density of states) is universal for arbitrary strength of electronic correlations and is due only to the general disorder widening of conduction band. Using the combination of DMFT +Σ and Nozieres–Schmitt-Rink approximations, we have studied the disorder influence upon superconducting transition temperature T c for the range of characteristic values of U and disorder including the BCS-BEC crossover region. Disorder can either suppress T c (in the weak coupling region) or significantly increase T c (in strong coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of superconducting critical temperature are essentially due only to the general disorder widening of the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eagles, D.M.: Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  2. Leggett, A.J.: Modern Trends in the Theory of Condensed Matter. In: Pekalski, A., Przystawa, J. (eds.) . Springer, Berlin (1980)

  3. Nozieres, P., Schmitt-Rink, S.: J. Low Temp. Phys. 59, 195 (1985). 333 (2006)

    Article  ADS  Google Scholar 

  4. Pruschke, Th., Jarrell, M., Freericks, J. K.: Adv. Phys. 44, 187 (1995)

    Article  ADS  Google Scholar 

  5. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Vollhardt, D.: Lectures on the Physics of Strongly Correlated Systems XIV. In: Avella, A., Mancini, F. (eds.) AIP Conference Proceedings vol. 1297 (American Institute of Physics, Melville, New York, 2010), p. 339. arXiv:1004.5069

  7. Keller, M., Metzner, W., Schollwock, U.: Phys. Rev. Lett. 86, 46124615 (2001). arXiv:cond-mat/0101047

    Article  Google Scholar 

  8. Toschi, A., Barone, P., Capone, M., Castellani, C.: New J. Phys. 7, 7 (2005). arXiv:cond-mat/0411637v1

    Article  ADS  Google Scholar 

  9. Bauer, J., Hewson, A.C., Dupis, N.: Phys. Rev. B 79, 214518 (2009). arXiv:0901.1760v2ssss

    Article  ADS  Google Scholar 

  10. Koga, A., Werner, P.: Phys. Rev. A 84, 023638 (2011). arXiv:1106.4559v1

    Article  ADS  Google Scholar 

  11. Kuleeva, N.A., Kuchinskii, E.Z., Sadovskii, M.V.: Zh. Eksp. Teor. Fiz. 146, 304 (2014). [JETP 119, 264 (2014)]; arXiv:2295.1401

    Google Scholar 

  12. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Pis’ma Zh. Eksp. Teor. Fiz. 82(4), 217 (2005). [JETP Lett. 82, 198 (2005)]; arXiv:cond-mat/0506215

    Google Scholar 

  13. Sadovskii, M.V., Nekrasov, I.A., Kuchinskii, E.Z., Prushke, Th., Anisimov, V.I.: Phys. Rev. B 72(15), 155105 (2005). arXiv:cond-mat/0508585

    Article  ADS  Google Scholar 

  14. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Fiz. Nizk. Temp. 32(4/5), 528–537 (2006). [Low Temp. Phys. 32, 398 (2006)]; arXiv:cond-mat/0510376

    Google Scholar 

  15. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Usp. Fiz. Nauk. 182, 345 (2012). [Phys. Uspekhi 55, 325 (2012)]; arXiv:2305.1109

    Article  Google Scholar 

  16. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Zh. Ekp. Teor. Fiz. 133, 670 (2008). [JETP 106, 581 (2007)]; arXiv:2618.0706

    Google Scholar 

  17. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Phys. Rev. B 80, 115124 (2009). arXiv:0906.3865

    Article  ADS  Google Scholar 

  18. Kuchinskii, E.Z., Nekrasov, I.A., Sadovskii, M.V.: Phys. Rev. B 75, 115102 (2007). arXiv:cond-mat/0609404

    Article  ADS  Google Scholar 

  19. Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinskii, I.E.: Quantum Field Theoretical Methods in Statistical Physics. Pergamion Press, Oxford (1965)

    MATH  Google Scholar 

  20. Sadovskii, M.V.: Diagrammatics, p. 2006. World Scientific, Singapore

  21. Bulla, R., Costi, T.A., Pruschke, T.: Rev. Mod. Phys. 60, 395 (2008)

    Article  ADS  Google Scholar 

  22. Kuchinskii, E.Z., Kuleeva, N.A., Sadovskii, M.V.: Zh. Eksp. Teor. Fiz. 147, 1220 (2015). [JETP 120, 1055 (2015)]; arXiv:1411.1547

    Google Scholar 

  23. Sadovskii, M.V.: Superconductivity and Localization. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  24. De Gennes, P.G.: Superconductivity of Metals and Alloys. Benjamin, W.A. NY (1966)

  25. Kuchinskii, E.Z., Kuleeva, N.A., Sadovskii, M.V., Pis’ma, Zh. Eksp. Teor. Fiz. 100(3), 213 (2014). [JETP Lett. 100, 192 (2014)]; arXiv:1406.5603

    Google Scholar 

  26. Kuchinskii, E.Z., Kuleeva, N.A., Sadovskii, M.V.: arXiv:1507.07649

Download references

Acknowledgments

This work is supported by RSF grant No. 14-12-00502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Kuchinskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskii, E.Z., Kuleeva, N.A. & Sadovskii, M.V. Attractive Hubbard Within the Generalized DMFT: Normal State Properties, Disorder Effects and Superconductivity. J Supercond Nov Magn 29, 1097–1103 (2016). https://doi.org/10.1007/s10948-016-3374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3374-9

Keywords

Navigation