Skip to main content
Log in

Collision centrality and system size dependences of light nuclei production via dynamical coalescence mechanism

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Light (anti-)nuclei in relativistic heavy-ion collisions are considered to be formed by the coalescence mechanism of (anti-)nucleons in the present work. Using a dynamical phase-space coalescence model coupled with a multi-phase transport (AMPT) model, we explore the formation of light clusters such as deuteron, triton and their anti-particles in different centralities for \(^{197}\)Au + \(^{197}\)Au collisions at \(\sqrt{s_{NN}} = 39\) GeV. The calculated transverse momentum spectra of protons, deuterons, and tritons are comparable to those of experimental data from the RHIC-STAR collaboration. Both coalescence parameters \(B_{2}\) for (anti-)deuteron and \(B_{3}\) for triton increase with the transverse momentum as well as the collision centrality, and they are comparable with the measured values in experiments. The effect of system size on the production of light nuclei is also investigated by \(^{10}\)B + \(^{10}\)B, \(^{16}\)O + \(^{16}\)O, \(^{40}\)Ca + \(^{40}\)Ca, and \(^{197}\)Au + \(^{197}\)Au systems in central collisions. The results show that yields of light nuclei increase with system size, while the values of coalescence parameters present an opposite trend. It is interesting to see that the system size, as well as the centrality dependence of \(B_A\) (A = 2, 3), falls into the same group, which further demonstrates production probability of light nuclei is proportional to the size of the fireball. Furthermore, we compare our coalescence results with other models, such as the thermal model and analytic coalescence model, it seems that the description of light nuclei production is consistent with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. F. Karsch, Nucl. Phys. A 698, 199 (2002). https://doi.org/10.1016/S0375-9474(01)01365-3

    Article  ADS  Google Scholar 

  2. C.-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (WORLD SCIENTIFIC, 1994). https://doi.org/10.1142/1128

  3. E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017). https://doi.org/10.1103/RevModPhys.89.035001

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Phys. Rep. 621, 76 (2016). https://doi.org/10.1016/j.physrep.2015.12.003

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Chen, D. Keane, Y.-G. Ma, A. Tang, Z. Xu, Phys.Rep. 760, 1 (2018). https://doi.org/10.1016/j.physrep.2018.07.002

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Wu, C. Shen, H. Song, Chin. Phys. Lett. 38, 081201 (2021). https://doi.org/10.1088/0256-307X/38/8/081201

    Article  ADS  Google Scholar 

  7. C. Shen, Y. Li, Nucl. Sci. Tech. 31, 122 (2020). https://doi.org/10.1007/s41365-020-00829-z

    Article  Google Scholar 

  8. K. Fukushima, C. Sasaki, Progress Particle Nucl. Phys. 72, 99 (2013). https://doi.org/10.1016/j.ppnp.2013.05.003

    Article  ADS  Google Scholar 

  9. A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Phys. Rep. 853, 1 (2020). https://doi.org/10.1016/j.physrep.2020.01.005

    Article  ADS  Google Scholar 

  10. J. Adam et al., (STAR Collaboration). Phys. Rev. C 99, 064905 (2019). https://doi.org/10.1103/PhysRevC.99.064905

  11. J.-H. Gao, G.-L. Ma, S. Pu, Q. Wang, Nucl. Sci. Tech. 31, 90 (2020). https://doi.org/10.1007/s41365-020-00801-x

    Article  Google Scholar 

  12. Z.-B. Tang, W.-M. Zha, Y.-F. Zhang, Nucl. Sci. Tech. 31, 81 (2020). https://doi.org/10.1007/s41365-020-00785-8

    Article  Google Scholar 

  13. Z. Han, B. Chen, Y. Liu, Chin. Phys. Lett. 37, 112501 (2020). https://doi.org/10.1088/0256-307x/37/11/112501

    Article  ADS  Google Scholar 

  14. H. Wang, J.H. Chen, Y.G. Ma et al., Nucl. Sci. Tech. 30, 185 (2019). https://doi.org/10.1007/s41365-019-0706-z

    Article  Google Scholar 

  15. Y.-C. Liu, X.-G. Huang, Nucl. Sci. Tech. 31, 56 (2020). https://doi.org/10.1007/s41365-020-00764-z

    Article  Google Scholar 

  16. K.-J. Sun, L.-W. Chen, C.M. Ko, J. Pu, Z. Xu, Phys. Lett. B 781, 499 (2018). https://doi.org/10.1016/j.physletb.2018.04.035

    Article  ADS  Google Scholar 

  17. N. Yu, D. Zhang, X. Luo, Chin. Phys. C 44, 014002 (2020). https://doi.org/10.1088/1674-1137/44/1/014002

    Article  ADS  Google Scholar 

  18. X.G. Deng, Y.G. Ma, Phys. Lett. B 808, 135668 (2020). https://doi.org/10.1103/PhysRevC.99.064905

    Article  Google Scholar 

  19. H. Liu, D. Zhang, S. He, K.-J. Sun, N. Yu, X. Luo, Phys. Lett. B 805, 135452 (2020). https://doi.org/10.1016/j.physletb.2020.135452

    Article  Google Scholar 

  20. K.-J. Sun, L.-W. Chen, C.M. Ko, Z. Xu, Phys. Lett. B 774, 103 (2017). https://doi.org/10.1016/j.physletb.2017.09.056

    Article  ADS  Google Scholar 

  21. E. Shuryak, J.M. Torres-Rincon, Phys. Rev. C 100, 024903 (2019). https://doi.org/10.1103/PhysRevC.100.024903

    Article  ADS  Google Scholar 

  22. E. Shuryak, J.M. Torres-Rincon, Euro. Phys. J. A 56, 241 (2020). https://doi.org/10.1140/epja/s10050-020-00244-3

    Article  ADS  Google Scholar 

  23. A. Andronic, P. Braun-Munzinger, D. Gündüz, Y. Kirchhoff, M. Köhler, J. Stachel, M. Winn, Nucl. Phys. A 1010, 122176 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122176

    Article  Google Scholar 

  24. D.-F. Wang, S. Zhang, Y.-G. Ma, Phys. Rev. C 101, 034906 (2020). https://doi.org/10.1103/PhysRevC.101.034906

    Article  ADS  Google Scholar 

  25. B.I. Abelev et al., STAR Collaboration. Phys. Rev. C 79, 034909 (2009). https://doi.org/10.1103/PhysRevC.79.034909

    Article  ADS  Google Scholar 

  26. R. Mattiello, H. Sorge, H. Stöcker, W. Greiner, Phys. Rev. C 55, 1443 (1997). https://doi.org/10.1103/PhysRevC.55.1443

    Article  ADS  Google Scholar 

  27. T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Phys. Lett. B 638, 50 (2006). https://doi.org/10.1016/j.physletb.2006.05.018

    Article  ADS  Google Scholar 

  28. S. Zhang, J.H. Chen, H. Crawford, D. Keane, Y.G. Ma, Z. Xu, Phys. Lett. B 684, 224 (2010). https://doi.org/10.1016/j.physletb.2010.01.034

    Article  ADS  Google Scholar 

  29. S. Cho, T. Hyodo, D. Jido et al., Progress Particle Nucl. Phys. 95, 279 (2017). https://doi.org/10.1016/j.ppnp.2017.02.002

    Article  ADS  Google Scholar 

  30. T.T. Wang, Y.G. Ma, Eur. Phys. J. A 55, 102 (2019). https://doi.org/10.1140/epja/i2019-12788-0

    Article  ADS  Google Scholar 

  31. W. Zhao, C. Shen, C.M. Ko, Q. Liu, H. Song, Phys. Rev. C 102, 044912 (2020). https://doi.org/10.1103/PhysRevC.102.044912

    Article  ADS  Google Scholar 

  32. K.-J. Sun, C.M. Ko, B. Dönigus, Phys. Lett. B 792, 132 (2019). https://doi.org/10.1016/j.physletb.2019.03.033

    Article  ADS  Google Scholar 

  33. P. Danielewicz, G. Bertsch, Nucl. Phys. A 533, 712 (1991). https://doi.org/10.1016/0375-9474(91)90541-D

    Article  ADS  Google Scholar 

  34. D. Oliinychenko, L.-G. Pang, H. Elfner, V. Koch, Phys. Rev. C 99, 044907 (2019). https://doi.org/10.1103/PhysRevC.99.044907

    Article  ADS  Google Scholar 

  35. K.-J. Sun, R. Wang, C.M. Ko, Y.-G. Ma, C. Shen, arXiv e-prints , arXiv:2106.12742 (2021)

  36. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  ADS  Google Scholar 

  37. F. Bellini, A.P. Kalweit, Phys. Rev. C 99, 054905 (2019). https://doi.org/10.1103/PhysRevC.99.054905

    Article  ADS  Google Scholar 

  38. S. Huang, Z. Chen, W. Li, J. Jia, Phys. Rev. C 101, 021901 (2020). https://doi.org/10.1103/PhysRevC.101.021901

    Article  ADS  Google Scholar 

  39. M. Sievert, J. Noronha-Hostler, Phys. Rev. C 100, 024904 (2019). https://doi.org/10.1103/PhysRevC.100.024904

    Article  ADS  Google Scholar 

  40. J.L. Nagle, A. Adare, S. Beckman, T. Koblesky, J.O. Koop, D. McGlinchey, P. Romatschke, J. Carlson, J.E. Lynn, M. McCumber, Phys. Rev. Lett. 113, 112301 (2014). https://doi.org/10.1103/PhysRevLett.113.112301

    Article  ADS  Google Scholar 

  41. S.H. Lim, J. Carlson, C. Loizides, D. Lonardoni, J.E. Lynn, J.L. Nagle, J.D. Orjuela Koop, J. Ouellette, Phys. Rev. C 99, 044904 (2019). https://doi.org/10.1103/PhysRevC.99.044904

    Article  ADS  Google Scholar 

  42. R. Katz, C.A.G. Prado, J. Noronha-Hostler, A.A.P. Suaide, Phys. Rev. C 102, 041901 (2020). https://doi.org/10.1103/PhysRevC.102.041901

    Article  ADS  Google Scholar 

  43. S. Zhang, Y.G. Ma, G.L. Ma, J.H. Chen, Q.Y. Shou, W.B. He, C. Zhong, Phys. Lett. B 804, 135366 (2020). https://doi.org/10.1016/j.physletb.2020.135366

    Article  Google Scholar 

  44. P. Liu, J.-H. Chen, Y.-G. Ma et al., Nucl. Sci. Tech. 28, 55 (2017). https://doi.org/10.1007/s41365-017-0207-x

    Article  Google Scholar 

  45. X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  ADS  Google Scholar 

  46. M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994). https://doi.org/10.1016/0010-4655(94)90057-4

    Article  ADS  Google Scholar 

  47. B. Zhang, Comput. Phys. Commun. 109, 193 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1

    Article  ADS  Google Scholar 

  48. B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995). https://doi.org/10.1103/PhysRevC.52.2037

  49. G.-L. Ma, Z.-W. Lin, Phys. Rev. C 93, 054911 (2016). https://doi.org/10.1103/PhysRevC.93.054911

    Article  ADS  Google Scholar 

  50. Z.-W. Lin, L. Zheng, Nucl. Sci. Tech. 32, 113 (2021). https://doi.org/10.1007/s41365-021-00944-5

    Article  Google Scholar 

  51. L. Csernai, J.I. Kapusta, Phys. Rep. 131, 223 (1986). https://doi.org/10.1016/0370-1573(86)90031-1

    Article  ADS  Google Scholar 

  52. L.-W. Chen, C. Ko, B.-A. Li, Nucl. Phys. A 729, 809 (2003). https://doi.org/10.1016/j.nuclphysa.2003.09.010

    Article  ADS  Google Scholar 

  53. W. Zhao, L. Zhu, H. Zheng, C.M. Ko, H. Song, Phys. Rev. C 98, 054905 (2018). https://doi.org/10.1103/PhysRevC.98.054905

    Article  ADS  Google Scholar 

  54. K.-J. Sun, C.M. Ko, Z.-W. Lin, Phys. Rev. C 103, 064909 (2021). https://doi.org/10.1103/PhysRevC.103.064909

    Article  ADS  Google Scholar 

  55. K.-J. Sun, L.-W. Chen, Phys. Lett. B 751, 272 (2015). https://doi.org/10.1016/j.physletb.2015.10.056

    Article  ADS  Google Scholar 

  56. L. Adamczyk et al., STAR Collaboration. Phys. Rev. C 96, 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904

    Article  ADS  Google Scholar 

  57. D. Zhang, Nucl. Phys. A 1005, 121825 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121825

    Article  Google Scholar 

  58. S. Zhang, Y.H. Zhu, G.L. Ma, Y.G. Ma, X.Z. Cai, J.H. Chen, C. Zhong, Nucl. Phys. A 860, 76 (2011). https://doi.org/10.1016/j.nuclphysa.2011.05.008

    Article  ADS  Google Scholar 

  59. P. Braun-Munzinger, K. Redlich, J. Stachel, Particle production in heavy ion collisions, in Quark-Gluon Plasma 3 (World Scientific Publishing Co Pte Ltd, 2004) pp. 491–599. https://doi.org/10.1142/9789812795533_0008

  60. D. Zhang, (for the STAR Collaboration), JPS Conf. Proc. 32, 010069 (2019). https://doi.org/10.7566/JPSCP.32.010069

  61. N. Yu, X. Luo, Eur. Phys. J. A 55, 26 (2019). https://doi.org/10.1140/epja/i2019-12691-8

    Article  ADS  Google Scholar 

  62. V. Vovchenko, B. Dönigus, B. Kardan, M. Lorenz, H. Stoecker, Phys. Lett. B 809, 135746 (2020). https://doi.org/10.1016/j.physletb.2020.135746

    Article  Google Scholar 

  63. K.-J. Sun, L.-W. Chen, Phys. Rev. C 95, 044905 (2017). https://doi.org/10.1103/PhysRevC.95.044905

    Article  ADS  Google Scholar 

  64. N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016). https://doi.org/10.1016/j.physletb.2016.01.005

    Article  ADS  Google Scholar 

  65. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018). https://doi.org/10.1038/s41586-018-0491-6

    Article  ADS  Google Scholar 

  66. K.-J. Sun, L.-W. Chen, Phys. Rev. C 93, 064909 (2016). https://doi.org/10.1103/PhysRevC.93.064909

    Article  ADS  Google Scholar 

  67. S. Sombun, K. Tomuang, A. Limphirat, P. Hillmann, C. Herold, J. Steinheimer, Y. Yan, M. Bleicher, Phys. Rev. C 99, 014901 (2019). https://doi.org/10.1103/PhysRevC.99.014901

    Article  ADS  Google Scholar 

  68. M. Aggarwal et al. (STAR collaboration), arXiv e-prints , arXiv:1007.2613 (2010)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under contract Nos. 11875066, 11890710, 11890714, 11925502, 11961141003, National Key R&D Program of China under Grant No. 2018YFE0104600 and 2016YFE0100900, the Strategic Priority Research Program of CAS under Grant No. XDB34000000, the Key Research Program of Frontier Sciences of the CAS under Grant No. QYZDJ-SSW- SLH002, and the Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

Communicated by Che-Ming Ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YL., Zhang, S. & Ma, YG. Collision centrality and system size dependences of light nuclei production via dynamical coalescence mechanism. Eur. Phys. J. A 57, 330 (2021). https://doi.org/10.1140/epja/s10050-021-00639-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00639-w

Navigation