Skip to main content
Log in

Production of light nuclei and hypernuclei at High Intensity Accelerator Facility energy region

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

An Erratum to this article was published on 25 May 2017

Abstract

Heavy-ion collisions are powerful tools for studying hypernuclear physics. We develop a dynamical coalescence model coupled with an ART model (version 1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions, for instance, the deuteron (d), triton (t), helium (\(^3\)He), and hypertriton (\(^3_\Lambda \)H) in minimum bias (0–80% centrality) \(^6\)Li + \(^{12}\)C reactions at beam energy of 3.5A GeV. The penalty factor for light clusters is extracted from the yields, and the distributions of \(\theta \) angle of particles, which provide direct suggesetions about the location of particle detectors in the near future facility—High Intensity heavy-ion Accelerator Facility (HIAF) are investigated. Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.A. Armstrong, K.N. Barish, S. Batsouli et al., Production of \(_{\Lambda }^{3}{H}\) and \(_{\Lambda }^{4}{H}\) in central 11.5 GeV/\(c\) Au + Pt heavy ion collisions. Phys. Rev. C 70, 024902 (2004). doi:10.1103/PhysRevC.70.024902

    Article  Google Scholar 

  2. D. Lonardoni, A. Lovato, S. Gandolfi et al., Hyperon puzzle: hints from quantum monte carlo calculations. Phys. Rev. Lett. 114, 092301 (2015). doi:10.1103/PhysRevLett.114.092301

    Article  Google Scholar 

  3. J.M. Lattimer, M. Prakash, The physics of neutron stars. Science 304, 536 (2004). doi:10.1126/science.1090720

    Article  Google Scholar 

  4. R.H. Dalitz, G. Rajasekharan, The spins and lifetimes of the light hypernuclei. Phys. Lett. 1, 58–60 (1962). doi:10.1016/0031-9163(62)90437-7

    Article  Google Scholar 

  5. H. Kamada, J. Golak, K. Miyagawa et al., \(\pi \)-mesonic decay of the hypertriton. Phys. Rev. C 57, 1595–1603 (1998). doi:10.1103/PhysRevC.57.1595

    Article  Google Scholar 

  6. M. Juric, G. Bohm, J. Klabuhn et al., A new determination of the binding-energy values of the light hypernuclei (A \(\le \) 15). Nucl. Phys. B 52, 1–30 (1973). doi:10.1016/0550-3213(73)90084-9

    Article  Google Scholar 

  7. S. Zhang, J.H. Chen, Y.G. Ma et al., Hypertriton and light nuclei production at \(\Lambda \)-production subthreshold energy in heavy-ion collisions. Chin. Phys. C (HEP&NP) 35(8), 741–747 (2011). doi:10.1088/1674-1137/35/8/008

    Article  Google Scholar 

  8. Z.Q. Zhang, Y.G. Ma, Measurements of momentum correlation and interaction parameters between antiprotons. Nucl. Sci. Tech. 27, 152 (2016). doi:10.1007/s41365-016-0147-x

    Article  Google Scholar 

  9. L. Adamczyk, S.T.A.R. Collaboration et al., Measurement of interaction between antiprotons. Nature 527, 345–348 (2015). doi:10.1038/nature15724

    Article  Google Scholar 

  10. H. Agakishiev, STAR Collaborationm et al., Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011). doi:10.1038/nature10079

  11. L. Xue, STAR Collaboration, Observation of the antimatter helium-4 nucleus at the RHIC. J. Phys. G Nucl. Part. Phys. 38, 124072 (2011). doi:10.1088/0954-3899/38/12/124072

  12. Y.F. Xu, Y.J. Ye, J.H. Chen et al., Low-mass vector meson production at forward rapidity in p + p and d + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV from a multiphase transport model. Nucl. Sci. Tech. 27, 87 (2016). doi:10.1007/s41365-016-0093-7

    Article  Google Scholar 

  13. L. Adamczyk, STAR Collaboration et al., \(\Lambda \) \(\Lambda \) correlation function in Au + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Rev. Lett. 114, 022301 (2015). doi:10.1103/PhysRevLett.114.022301

  14. Y.G. Ma, J.H. Chen, L. Xue, A brief review of antimatter production. Front. Phys. 7, 637 (2012). doi:10.1007/s11467-012-0273-9

    Article  Google Scholar 

  15. Y.G. Ma, J.H. Chen, L. Xue et al., Hunting antimatter nuclei in ultrarelativistic heavy-ion collisions. Nucl. Phys. News 23(1), 10–14 (2013). doi:10.1080/10619127.2012.738164

    Article  Google Scholar 

  16. B.I. Abelev, STAR Collaboration et al., Observation of an antimatter hypernucleus. Science 328, 58–62 (2010). doi:10.1126/science.1183980

  17. J.H. Chen, STAR Collaboration, Observation of hypertritons in Au+Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Nucl. Phys. A 830, 761c–764c (2009). doi:10.1016/j.nuclphysa.2009.10.001

  18. R. Lea et al., Hypernuclei production in Pb-Pb collisions at \(\sqrt{S_{NN}}\) = 2.76 TeV with ALICE at the LHC. Nucl. Phys. A 914, 415–420 (2013). doi:10.1016/j.nuclphysa.2013.02.089

    Article  Google Scholar 

  19. C. Rappold, E. Kim, D. Nakajima et al., Hypernuclear spectroscopy of products from \(^6\)Li projectiles on a carbon target at 2 \(A\) GeV. Nucl. Phys. A 913, 170–184 (2013). doi:10.1016/j.nuclphysa.2013.05.019

    Article  Google Scholar 

  20. See details of a topical session at HYP2015 International Conference, http://lambda.phys.tohoku.ac.jp/hyp2015/

  21. A. Feliciello, Recent achievements in hypernuclear physics. Few Body Syst. 55, 605–613 (2014). doi:10.1007/s00601-013-0759-1

    Article  Google Scholar 

  22. N. Shah, Y.G. Ma, J.H. Chen et al., Production of multistrange hadrons, light nuclei and hypertriton in central Au + Au collisions at \(\sqrt{S_{NN}}\) = 11.5 and 200 GeV. Phys. Lett. B 754, 6–10 (2016). doi:10.1016/j.physletb.2016.01.005

    Article  Google Scholar 

  23. T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Scaling of anisotropic flow and momentum-space densities for light particles in intermediate energy heavy ion collisions. Phys. Lett. B 638, 50–54 (2006). doi:10.1016/j.physletb.2006.05.018

    Article  Google Scholar 

  24. G.F. Bertsch, S. Das, Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189–233 (1988). doi:10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  25. B.A. Li, W. Bauer, Two-temperature shape of pion spectra in relativistic heavy-ion reactions. Phys. Lett. B 254, 335–339 (1991). doi:10.1016/0370-2693(91)91165-R

    Article  Google Scholar 

  26. W.Z. Lin, C.M. Ko, B.A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi:10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  27. B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037–2063 (1995). doi:10.1103/PhysRevC.52.2037

    Article  Google Scholar 

  28. M. Gyulassy, K. Frankel, E.A. Relmer, Deuteron formation in nuclear collisions. Nucl. Phys. A 402, 596–611 (1983). doi:10.1016/0375-9474(83)90222-1

    Article  Google Scholar 

  29. S. Zhang, J.H. Chen, H. Crawford et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224–227 (2010). doi:10.1016/j.physletb.2010.01.034

    Article  Google Scholar 

  30. R. Mattiello, H. Sorge, H. Stocker et al., Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10–15)\(A\) GeV. Phys. Rev. C 55, 1443–1454 (1997). doi:10.1103/PhysRevC.55.1443

    Article  Google Scholar 

  31. Y. Oh, C.M. Ko, Elliptic flow of deuterons in relativistic heavy-ion collisions. Phys. Rev. C 76, 054910 (2007). doi:10.1103/PhysRevC.76.054910

    Article  Google Scholar 

  32. K.J. Sun, L.W. Chen, Production of antimatter \(^{5,6}\)Li nuclei in central Au + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Lett. B 751, 272–277 (2015). doi:10.1016/j.physletb.2015.10.056

    Article  Google Scholar 

  33. R. Mattiello, A. Jahns, H. Sorge et al., Deuteron flow in ultrarelativistic heavy ion reactions. Phys. Rev. Lett. 74, 2180–2183 (1995). doi:10.1103/PhysRevLett.74.2180

    Article  Google Scholar 

  34. L.W. Chen, C.M. Ko, B.A. Li, Light clusters production as a probe to nuclear symmetry energy. Phys. Rev. C 68, 017601 (2003). doi:10.1103/PhysRevC.68.017601

    Article  Google Scholar 

  35. L.W. Chen, C.M. Ko, B.A. Li, Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich Nuclei. Nucl. Phys. A 729, 809 (2003). doi:10.1016/j.nuclphysa.2003.09.010

    Article  Google Scholar 

  36. A. Polleri, R. Mattiello, I.N. Mishustin et al., Reconstruction of the proton source in relativistic heavy ion collisions. Nucl. Phys. A 661, 452–455 (1999). doi:10.1016/S0375-9474(99)85063-5

    Article  Google Scholar 

  37. A.T.M. Aerts, C.B. Dover, On the production of the six-quark \(H\) dibaryon in the (\({K}^{-}, {K}^{+}\)) reaction. Phys. Rev. D 28, 450–463 (1983). doi:10.1103/PhysRevD.28.450

    Article  Google Scholar 

  38. A.S. Botvina, J. Steinheimer, E. Bratkovskaya et al., Formation of hypermatter and hypernuclei within transport models in relativistic ion collisions. Phys. Lett. B 742, 7–14 (2015). doi:10.1016/j.physletb.2014.12.060

    Article  Google Scholar 

  39. A.S. Botvina, K.K. Gudima et al., Production of hypernuclei in peripheral relativistic ion collisions. Phys. Rev. C 88, 054605 (2013). doi:10.1103/PhysRevC.88.054605

    Article  Google Scholar 

  40. Z.B. Xu, Search for positively charged strangelets and other related results with E864 at the AGS. J. Phys. G Nucl. Part. Phys. 25, 403 (1999). doi:10.1088/0954-3899/25/2/029

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the discussion with Dr. T. Saito.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Hui Chen or Yu-Gang Ma.

Additional information

The original version of this article is revised. In the original publication of this article equations. 1–7 and equation. 9 have been incorrectly online published. The correct version of the equations is updated in this original article.

This work was supported in part by the Major State Basic Research Development Program in China (Nos. 2014CB845401 and 2015CB856904), and the National Natural Science Foundation of China (Nos. 11421505, 11520101004, 11275250, 11322547 and U1232206), and Key Program of CAS for the Frontier Science (No. QYZDJ-SSW-SLH002).

An erratum to this article is available at http://dx.doi.org/10.1007/s41365-017-0224-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Chen, JH., Ma, YG. et al. Production of light nuclei and hypernuclei at High Intensity Accelerator Facility energy region. NUCL SCI TECH 28, 55 (2017). https://doi.org/10.1007/s41365-017-0207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0207-x

Keywords

Navigation