Skip to main content
Log in

Nuclear multifragmentation, its relation to general physics

A rich test ground of the fundamentals of statistical mechanics

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Heat can flow from cold to hot at any phase separation even in macroscopic systems. Therefore also Lynden-Bell's famous gravo-thermal catastrophe must be reconsidered. In contrast to traditional canonical Boltzmann-Gibbs statistics this is correctly described only by microcanonical statistics. Systems studied in chemical thermodynamics (ChTh) by using canonical statistics consist of several homogeneous macroscopic phases. Evidently, macroscopic statistics as in chemistry cannot and should not be applied to non-extensive or inhomogeneous systems like nuclei or galaxies. Nuclei are small and inhomogeneous. Multifragmented nuclei are even more inhomogeneous and the fragments even smaller. Phase transitions of first order and especially phase separations therefore cannot be described by a (homogeneous) canonical ensemble. Taking this serious, fascinating perspectives open for statistical nuclear fragmentation as test ground for the basic principles of statistical mechanics, especially of phase transitions, without the use of the thermodynamic limit. Moreover, there is also a lot of similarity between the accessible phase space of fragmenting nuclei and inhomogeneous multistellar systems. This underlines the fundamental significance for statistical physics in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Randrup, S.E. Koonin, Nucl. Phys. A 356, 223 (1981).

    Article  ADS  Google Scholar 

  2. D.H.E. Gross, Meng Ta-chung, Production mechanism of large fragments in high energy nuclear reactions, in Proceedings of the 4th Nordic Meeting on Intermediate and High Energy Nuclear Physics, Geilo, Norway, Jan 5-9, 1981 (University of Lund, 1981) p. 29.

  3. D.H.E. Gross, Phys. Scr. T 5, 213 (1983).

    ADS  Google Scholar 

  4. D.H.E. Gross, Microcanonical thermodynamics: Phase transitions in ``Small'' systems, Lect. Notes Phys., Vol. 66 (World Scientific, Singapore, 2001).

  5. J.P. Bondorf, R. Donangelo, I.N. Mishustin, H. Schulz, K. Sneppen, Nucl. Phys. A 444, 460 (1985).

    Article  ADS  Google Scholar 

  6. Ph. Chomaz, F. Gulminelli, Nucl. Phys. A 647, 153 (1999).

    Article  ADS  Google Scholar 

  7. Al.H. Raduta, Ad.R. Raduta, Phys. Rev. C 56, 2059 (1997).

    Article  ADS  Google Scholar 

  8. A. Le Fevre, M. Ploszajczak, V.D. Toneev, Phys. Rev. C 60, 051602 (1999) http://xxx.lanl.gov/abs/ nucl-th/9901099.

    Article  ADS  Google Scholar 

  9. D.H.E. Gross, Thermo-Statistics or Topology of the Microcanonical Entropy Surface, Lect. Notes Phys., Vol. 602 (Springer, 2002) pp. 21--45

  10. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952).

    Article  MATH  ADS  Google Scholar 

  11. L. Boltzmann, Sitzungsber. Akad. Wiss. Wien II, 67 (1877).

  12. L. Boltzmann, Wien. Ber. 76, 373 (1877).

    Google Scholar 

  13. E.A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists (North-Holland Personal Library, Amsterdam, 1967).

  14. F. Gulminelli, Ph. Chomaz, V. Duflot, Abnormal kinetic energy fluctuations and critical behaviors in the microcanonical lattice gas model, Caen preprint, LPCC 99-17, 1999.

  15. R. Clausius, Ann. Phys. (Poggendorff) Chem. 79, 368

  16. R. Clausius, Ann. Phys. (Poggendorff) Chem. 93, 481 (1854).

    ADS  Google Scholar 

  17. R. Clausius, Ann. Phys. (Poggendorff) Chem. 125, 353 (1865).

    ADS  Google Scholar 

  18. I. Prigogine, Thermodynamics of Irreversible Processes (John Wiley & Sons, New York, 1961).

  19. J.E. Kilpatrick, Classical thermostatistics, in Statistical Mechanics, edited by H. Eyring, No. II (Academic Press, New York, 1967) Chapt. 1, pp. 1--52.

  20. D.H.E. Gross, Ensemble probabilistic equilibrium and non-equilibrium thermodynamics without the thermodynamic limit, in PQ-QP: Quantum Probability, White Noise Analysis, edited by Andrei Khrennikov (ACM, World Scientific, Boston, 2001) pp. 131--146.

  21. D.H.E. Gross, Entropy 6, 158 (2004).

    Article  MATH  ADS  Google Scholar 

  22. R.D. Carlitz, Phys. Rev. D 5, 3231 (1972).

    Article  ADS  Google Scholar 

  23. C. Bréchignac, Ph. Cahuzac, F. Carlier, J. Leygnier, J.Ph. Roux, J. Chem. Phys. 102, 1 (1995).

    Article  Google Scholar 

  24. P. Hertz, Ann. Phys. (Leipzig) 33, 537 (1910).

    MATH  ADS  Google Scholar 

  25. D.H.E. Gross, Nuclear statistics, microcanonical or canonical? the physicists vs. the chemists approach, in Proceedings of the XLIII International Winter Meeting on Nuclear Physics, Bormio, Italy, 2005, edited by I. Iori, A. Bortolotti, Ricerca Scientifica ed Educazione Permanente, Suppl. no. 124 (Milano, 2005) p. 148

  26. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968).

    ADS  Google Scholar 

  27. D.H.E. Gross, Physica A 340, 76 (2004) cond-mat/ 0311418.

    Article  MathSciNet  ADS  Google Scholar 

  28. L.G. Moretto, J.B. Elliot, L. Phair, G. J. Wozniak, Phys. Rev. C 66, 041601(R) http://arXiv.org/ abs/nucl-th/0208024.

  29. O. Schapiro, D.H.E. Gross, A. Ecker, Microcanonical Monte Carlo, in Proceedings of the First International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Las Vegas, Nevada, 1994, Lect. Notes Statistics, Vol. 106 (Springer, 2005) pp. 346--353.

  30. D.H.E. Gross, M.E. Madjet, Microcanonical vs. canonical thermodynamics, http://xxx.lanl.gov/abs/cond-mat/ 9611192 (1996).

  31. D.H.E. Gross, M.E. Madjet, Cluster fragmentation, a laboratory for thermodynamics and phase-transitions in particular, in Proceedings of Similarities and Differences between Atomic Nuclei and Clusters, Tsukuba, Japan 97, edited by Abe, Arai, Lee, Yabana (The American Institute of Physics, 1997) pp. 203--214.

  32. D.H.E. Gross, Phys. Chem. Chem. Phys. 4, 863 (2002) http://arXiv.org/abs/cond-mat/0201235.

    Article  Google Scholar 

  33. D.H.E. Gross, J.F. Kenney, J. Chem. Phys. 122, 224111 (2005) cond-mat/0503604.

    Article  ADS  Google Scholar 

  34. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (John Wiley & Sons, London, 1971).

  35. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43, July (2005).

    Google Scholar 

  36. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  37. D.H.E. Gross, Flaw of Jarzynski's equality when applied to systems with several degrees of freedom, cond-mat/0508721 (2005).

  38. D.H.E. Gross, Reply to Jarzynski's comment cond-mat/0509344, cond-mat/0509648 (2005).

  39. D.H.E. Gross, Phys. World 17, 23, October (2004).

    Google Scholar 

  40. J.E. Finn, Phys. Rev. Lett. 49, 1321 (1982).

    Article  ADS  Google Scholar 

  41. F. Gulminelli, Ph. Chomaz, O. Julliet, M.J. Ison, C.O. Dorso, Information theory of open fragmenting systems, lanl.arXiv.org/nucl-th/0511012 (2005).

  42. M. D'Agostino, Phys. Lett. B 473, 219 (2000).

    Article  ADS  Google Scholar 

  43. M. D'Agostino, M. Bruno, F. Gulminelli, R. Bougault, F. Cannata, Ph. Chomaz, R. Bougault, F. Gramegna, N. le Neindre, A. Moroni, G. Vannini, Nucl. Phys. A 734, 512 (2004).

    Article  ADS  Google Scholar 

  44. M. Pichon, the INDRA and ALADIN Collaborations, Bimodality in binary Au + Au collisions from $60$ to $100$MeV/u, in Proceedings of the XLI Winter Meeting on Nuclear Physics, Bormio, Italy, 2003, edited by I. Iori, A. Moroni, Ricerca Scientifica ed Educazione Permanente, Suppl. no. 120 (Milano, 2003) p. 149.

  45. D.R. Bowman, Phys. Lett. B 189, 282 (1987).

    Article  ADS  Google Scholar 

  46. P.H. Chavanis, M. Rieutord, Astron. Astrophys. 412, 1 (2003) http://arXiv.org/abs/astro-ph/0302594.

    Article  ADS  Google Scholar 

  47. E.V. Votyakov, H.I. Hidmi, A. De Martino, D.H.E. Gross, Phys. Rev. Lett. 89, 031101 (2002) http:// arXiv.org/abs/cond-mat/0202140.

    Article  ADS  Google Scholar 

  48. O. Lopez, D. Lacroix, E. Vient, Bimodality as signal of liquid-gas phase transition in nuclei?, http:// arXiv.org/abs/nucl-th/0504027 (2005).

  49. W. Thirring, Z. Phys. 235, 339 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. E. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, D.H.E. Nuclear multifragmentation, its relation to general physics. Eur. Phys. J. A 30, 293–302 (2006). https://doi.org/10.1140/epja/i2005-10317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10317-6

PACS.

Navigation