Skip to main content

Nuclear Structure Models Based on Relativistic Energy Density Functionals

  • Conference paper
  • First Online:
Basic Concepts in Nuclear Physics: Theory, Experiments and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 182))

  • 924 Accesses

Abstract

Relativistic energy density functionals provide an accurate global description of nuclear ground states and collective excitations. Guided by the medium dependence of microscopic nucleon self-energies in nuclear matter, semi-empirical functionals have been adjusted to the nuclear matter equation of state and to bulk properties of finite nuclei, and applied to studies of arbitrarily heavy nuclei, exotic nuclei far from stability, and even systems at the nucleon drip-lines. Based on this framework, structure models have been developed that go beyond the mean-field approximation and include collective correlations related to restoration of broken symmetries and fluctuations of collective variables. These models have become standard tools for nuclear structure calculations, able to describe and explain a wealth of new data from radioactive-beam facilities, the exciting phenomenology of nuclear astrophysics, and provide microscopic predictions for low-energy nuclear phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Lalazissis, P. Ring, D. Vretenar (eds.), Extended Density Functionals in Nuclear Structure Physics, vol. 641, Lecture Notes in Physics (Springer, Heidelberg, 2004)

    Google Scholar 

  2. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  3. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    Article  ADS  Google Scholar 

  4. J.R. Stone, P.-G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007)

    Article  ADS  Google Scholar 

  5. J. Erler, P. Klüpfel, P.-G. Reinhard, J. Phys. G 38, 033101 (2011)

    Article  ADS  Google Scholar 

  6. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  7. N. Argaman, G. Makov, Am. J. Phys 68, 69 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  9. C. Fiolhais, F. Nogueira, M. Marques (eds.), A primer in Density Functional Theory, vol. 620, Lecture Notes in Physics (Springer, Heidelberg, 2003)

    Google Scholar 

  10. E. Engel, R.M. Dreizler, Density Functional Theory (Springer-Verlag, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  11. R.O. Jones, Rev. Mod. Phys. 87, 897 (2015)

    Article  ADS  Google Scholar 

  12. J.W. Negele, Phys. Rev. C 1, 1260 (1970)

    Article  ADS  Google Scholar 

  13. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  14. J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972)

    Article  ADS  Google Scholar 

  15. J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

    Article  Google Scholar 

  16. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  17. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997)

    Article  ADS  Google Scholar 

  18. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    Article  ADS  Google Scholar 

  19. W. Long, J. Meng, N.V. Giai, S.-G. Zhou, Phys. Rev. C 69, 034319 (2004)

    Article  ADS  Google Scholar 

  20. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)

    Article  ADS  Google Scholar 

  21. W.C. Chen, J. Piekarewicz, Phys. Rev. C 90, 044305 (2014)

    Google Scholar 

  22. F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001)

    Article  ADS  Google Scholar 

  23. S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)

    Article  ADS  Google Scholar 

  24. T. Nikšić, D. Vretenar, P. Finelli, P. Ring, Phys. Rev. C 66, 024306 (2002)

    ADS  Google Scholar 

  25. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  26. T. Bürvenich, D.G. Madland, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 65, 044308 (2002)

    Article  ADS  Google Scholar 

  27. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng Phys. Rev. C 82, 054319 (2010)

    Google Scholar 

  28. P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 735, 449 (2004)

    Article  ADS  Google Scholar 

  29. P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 770, 1 (2006)

    Article  ADS  Google Scholar 

  30. T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    Article  ADS  Google Scholar 

  31. J.W. Holt, N. Kaiser, W. Weise, Prog. Part. Nucl. Phys. 73, 35 (2013)

    Article  ADS  Google Scholar 

  32. P.-G. Reinhard, C. Toepffer, Int. J. Mod. Phys. E 3, 435 (1994)

    Article  ADS  Google Scholar 

  33. P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989)

    Article  ADS  Google Scholar 

  34. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  35. A. Akmal, V.R. Pandharipande, D.G. Ravenhall. Phys. Rev. C 58, 1804 (1998)

    Google Scholar 

  36. S. Brandt, Statistical and Computational Methods in Data Analysis (Springer, New York, 1997)

    MATH  Google Scholar 

  37. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003)

    Google Scholar 

  38. J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard, J. Phys. G 41, 074001 (2014)

    Article  ADS  Google Scholar 

  39. P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010)

    Article  ADS  Google Scholar 

  40. F.J. Fattoyev, J. Piekarewicz. Phys. Rev. C 84, 064302 (2011)

    Google Scholar 

  41. Y. Gao, J. Dobaczewski, M. Kortelainen, D. Tarpanov, Phy. Rev. C 87, 034324 (2013)

    Article  ADS  Google Scholar 

  42. W.-C. Chen, J. Piekarewicz, Phys. Rev. C 90, 044305 (2014)

    Article  ADS  Google Scholar 

  43. T. Nikšić, N. Paar, P.-G. Reinhard, D. Vretenar, J. Phys. G 42, 034008 (2015)

    Article  ADS  Google Scholar 

  44. N. Schunck, J.D. McDonnell, J. Sarich, S.M. Wild, D. Higdon, J. Phys. G 42, 034024 (2015)

    Article  ADS  Google Scholar 

  45. J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  46. Y. Tian, Z.Y. Ma, P. Ring, Phys. Lett. B 676, 44 (2009)

    Article  ADS  Google Scholar 

  47. J.F. Berger, M. Girod, D. Gogny, Comp. Phys. Comm. 63, 365 (1991)

    Article  ADS  Google Scholar 

  48. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36 (2012)

    Google Scholar 

  49. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  50. S.E. Agbemava, A.V. Afanasjev, D. Ray, P. Ring, Phys. Rev. C 89, 054320 (2014)

    Article  ADS  Google Scholar 

  51. P.-H. Heenen, J. Skalski, A. Staszczak, D. Vretenar, Nucl. Phys. A (2015). doi:10.1016/j.nuclphysa.2015.07.016

    Google Scholar 

  52. A.V. Afanasjev, S.E. Agbemava, D. Ray, P. Ring, Phys. Rev. C 91, 014324 (2015)

    Article  ADS  Google Scholar 

  53. S.E. Agbemava, A.V. Afanasjev, T. Nakatsukasa, P. Ring, Phys. Rev. C (2015), (in press)

    Google Scholar 

  54. T. Nikšić, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)

    Article  ADS  Google Scholar 

  55. T. Duguet, J. Sadoudi, J. Phys. G 37, 064009 (2010)

    Article  ADS  Google Scholar 

  56. T. Duguet, in Lecture Notes in Physics, vol. 879 (Springer, Heidelberg, 2014), p. 293

    Google Scholar 

  57. M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)

    Article  ADS  Google Scholar 

  58. T.R. Rodriguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

    Article  ADS  Google Scholar 

  59. J.M. Yao, K. Hagino, Z.P. Li, J. Meng, P. Ring, Phys. Rev. C 89, 054306 (2014)

    Article  ADS  Google Scholar 

  60. B. Bally, B. Avez, M. Bender, P.-H. Heenen, Phys. Rev. Lett. 113, 162501 (2014)

    Article  ADS  Google Scholar 

  61. M. Baranger, M. Veneroni, Ann. Phys. (N.Y.) 114, 123 (1978)

    Google Scholar 

  62. P.-G. Reinhard, K. Goeke, Rep. Prog. Phys. 50, 1 (1987)

    Article  ADS  Google Scholar 

  63. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, J. Meyer, Nucl. Phys. A 510, 466 (1990)

    Article  ADS  Google Scholar 

  64. L. Próchniak, S.G. Rohoziński, J. Phys. G 36, 123101 (2009)

    Article  ADS  Google Scholar 

  65. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Heidelberg, 1980)

    Book  Google Scholar 

  66. B. Giraud, B. Grammaticos, Nucl. Phys. A 255, 141 (1975)

    Article  ADS  Google Scholar 

  67. M. Girod, B. Grammaticos, Nucl. Phys. A 330, 40 (1979)

    Article  ADS  Google Scholar 

  68. N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67, 034312 (2003)

    Article  ADS  Google Scholar 

  69. N. Paar, D. Vretenar, E. Khan, G. Colo, Rep. Prog. Phys. 70, 691 (2007)

    Article  ADS  Google Scholar 

  70. B.L. Berman, S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

    Article  ADS  Google Scholar 

  71. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)

    Article  ADS  Google Scholar 

  72. D. Vretenar, T. Nikšić, P. Ring, Phys. Rev. C 68, 024310 (2003)

    Article  ADS  Google Scholar 

  73. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT, Cambridge, 1986)

    Google Scholar 

  74. E. Clément et al., Phys. Rev. C 75, 054313 (2007)

    Article  ADS  Google Scholar 

  75. W. Pauli, in Handbuch der Physik, vol. XXIV (Springer Verlag, Berlin, 1933), p. 120

    Google Scholar 

  76. K. Kumar, M. Baranger, Nucl. Phys. A 92, 608 (1967)

    Article  ADS  Google Scholar 

  77. T. Nikšić, Z.P. Li, D. Vretenar, L. Próchniak, J. Meng, P. Ring, Phys. Rev. C 79, 034303 (2009)

    Article  ADS  Google Scholar 

  78. Brookhaven National Nuclear Data Center. http://www.nndc.bnl.gov

  79. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  80. P.E. Garrett et al., Phys. Rev. Lett. 103, 062501 (2009)

    Article  ADS  Google Scholar 

  81. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007)

    Article  ADS  Google Scholar 

  82. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)

    Article  ADS  Google Scholar 

  83. P.A. Butler, L. Willmann, Nucl. Phys. News 25, 12 (2015)

    Article  Google Scholar 

  84. L.P. Gaffney et al., Nature 497, 199 (2013)

    Article  ADS  Google Scholar 

  85. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 054302 (2011)

    Article  ADS  Google Scholar 

  86. L.M. Robledo, P.A. Butler, Phys. Rev. C 88, 051302(R) (2013)

    Article  ADS  Google Scholar 

  87. Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Phys. Lett. B 726, 866 (2013)

    Article  ADS  Google Scholar 

  88. K. Nomura, D. Vretenar, T. Nikšić, B.-N. Lu, Phys. Rev. C 89, 024312 (2014)

    Article  ADS  Google Scholar 

  89. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 92, 014312 (2015)

    Article  ADS  Google Scholar 

  90. J.M. Yao, E.F. Zhou, Z.P. Li, Phys. Rev. C 92, 041304(R) (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank A.V. Afanasjev, Z.P. Li, J. Meng, K. Nomura, N. Paar, V. Prassa, P. Ring, J.M. Yao and J. Zhao for their contribution to the work reported in these notes. This work was supported in part by the Croatian Science Foundation—project “Structure and Dynamics of Exotic Femtosystems” (IP-2014-09-9159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Vretenar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vretenar, D., Nikšić, T. (2016). Nuclear Structure Models Based on Relativistic Energy Density Functionals. In: García-Ramos, JE., Alonso, C., Andrés, M., Pérez-Bernal, F. (eds) Basic Concepts in Nuclear Physics: Theory, Experiments and Applications. Springer Proceedings in Physics, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-21191-6_4

Download citation

Publish with us

Policies and ethics