Skip to main content
Log in

Preparation of Liposomal Sanguinarine and Study of Its Cytotoxic Effects against Prostate Cancer Cells

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—

Benzophenanthridine alkaloid sanguinarine from Macleaya macrocarpa shows antitumor and anti-angiogenic activity, among others. Some side effects of sanguinarine, which significantly limit the possibilities of its therapeutic use, are described. To increase the effectiveness of its therapeutic effect, sanguinarine was introduced into the pH-sensitive liposomes by remote loading using ammonium dihydrogen phosphate. pH-sensitive liposomes, appearing in the acidic environment of the tumor or endosomal compartment, release sanguinarine, which causes the death of tumor cells. The average diameter of the liposome particles measured by the method of dynamic light scattering was 112.6 ± 1.8 nm; the zeta potential was –13.9 ± 1.7 mV. The effectiveness of the inclusion of sanguinarine in liposomes was 89.54 ± 2.13%. The dynamics of release of sanguinarine from the composition of a liposome preparation was studied, and the prolonged release pattern was demonstrated. The cytotoxic activity (CTA) of liposomal sanguinarine against prostate cancer cell lines LNCaP, DU 145, and PC-3 was studied. Liposomal sanguinarine exhibited dose-dependent CTA against cells of all the studied lines in the micromolar range of concentrations. The highest CTA of liposomal sanguinarine was seen against the hormone-sensitive LNCaP cells (IC50 2.86 μM). For the hormone-independent cells of the DU 145 and PC-3 lines, the cytotoxic activity of liposomal sanguinarine was somewhat lower and amounted to 3.37 μM and 3.63 μM, respectively. A dose-dependent induction of apoptosis of LNCaP, DU 145, and PC-3 cells was also demonstrated. The liposomal sanguinarine with high efficiency induced apoptosis of both hormone-sensitive and hormone-independent cells. The liposomal sanguinarine at a concentration of 8 μM induced apoptosis in 93.14% of LNCaP cells, 90.65% of DU 145 cells, and 98.12% of PC-3 cells. Thus, liposomal sanguinarine can be considered as a promising antitumor agent for the therapy of both hormone-sensitive and hormone-independent tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Bambagiotti-Alberti, S. Pinzauti, G. Moneti, et al., J. Pharm. Biomed. Anal. 9, 1083 (1991).

    Article  CAS  Google Scholar 

  2. A. K. Salmore and M. D. Hunter, J. Chem. Ecol. 27, 1729 (2001).

    Article  CAS  Google Scholar 

  3. K. P?henčiková, J. Urbanová, P. Musil, et al., Molecules 16, 3391 (2011).

  4. M. Stiborova, V. Simanek, E. Frei, et al., Chem. Biol. Interact. 140, 231 (2002).

    Article  CAS  Google Scholar 

  5. K. M. Ansari, A. Dhawan, S. K. Khanna, and M. Das, Food Chem. Toxicol. 43, 147 (2005).

    Article  CAS  Google Scholar 

  6. V. P. Torchilin, Nat. Rev. Drug Discov. 4, 145 (2005).

    Article  CAS  Google Scholar 

  7. M. Wacker, Int. J. Pharm. 457, 50 (2013).

    Article  CAS  Google Scholar 

  8. G. Gregoriadis, N. Engl. J. Med. 295, 704 (1976).

    Article  CAS  Google Scholar 

  9. G. Gregoriadis, N. Engl. J. Med. 295, 765 (1976).

    Article  CAS  Google Scholar 

  10. G. Gregoriadis, Trends Biotechnol. 13, 527 (1995).

    Article  CAS  Google Scholar 

  11. J. Kreuter, Int. J. Pharm. 331, 1 (2007).

    Article  CAS  Google Scholar 

  12. S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, J. Control. Rel. 126, 187 (2008).

    Article  CAS  Google Scholar 

  13. S. K. Hobbs, W. L. Monsky, F. Yuan, et al., Proc. Natl. Acad. Sci. U. S. A. 95, 4607 (1998).

    Article  CAS  Google Scholar 

  14. G. Y. Zuo, F. Y. Meng, X. Y. Hao, et al., J. Pharm. Pharm. Sci. 11 (4), 90 (2008).

    Article  CAS  Google Scholar 

  15. F. Meng, G. Zuo, X. Hao, et al., J. Ethnopharmacol. 125, 494 (2009).

    Article  CAS  Google Scholar 

  16. H. Ahsan, S. Reagan-Shaw, J. Breur, and N. Ahmad, Cancer Lett. 249, 198 (2007).

    Article  CAS  Google Scholar 

  17. B. C. Jang, J. G. Park, D. K. Song, et al., Toxicol. In Vitro 23, 281 (2009).

    Article  CAS  Google Scholar 

  18. D. G. Tang and A. T. Porter, Prostate 32, 284 (1997).

    Article  CAS  Google Scholar 

  19. M. Gleave, N. Bruchovsky, S. L. Goldenberg, and P. Rennie, Eur. Urol. 34, 37 (1998).

    Article  Google Scholar 

  20. S. R. Denmeade, X. S. Lin, and J. T. Isaacs, Prostate 28, 251 (1996).

    Article  CAS  Google Scholar 

  21. A. Fritze, F. Hens, A. Kimpfler, and R. Schubert, Biochim. Biophys. Acta 1758, 1633 (2006).

    Article  CAS  Google Scholar 

  22. X. Zhang, S. Lu, J. Han, et al., Pharmazie 66, 404 (2011).

    CAS  Google Scholar 

  23. A. Adan, Y. Kiraz, and Y. Baran, Curr. Pharm. Biotechnol. 17, 1213 (2016).

    Article  CAS  Google Scholar 

  24. M. Stubbs, P. M. McSheehy, J. R. Griffiths, and C. L. Bashford, Mol. Med. Today 6, 15 (2000).

    Article  CAS  Google Scholar 

  25. Y. B. Hu, E. B. Dammer, R. J. Ren, and G. Wang, Transl. Neurodegener. 4, 18 (2015).

    Article  Google Scholar 

  26. E. Debiton, J. C. Madelmont, J. Legault, and C. Barthomeuf, Cancer Chemother. Pharmacol. 51, 474 (2003).

    Article  CAS  Google Scholar 

  27. Z. Ding, S. C. Tang, P. Weerasinghe, et al., Biochem. Pharmacol. 63, 1415 (2002).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian academic excellence project “5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Feldman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, N.B., Orekhov, S.N., Chakaleva, I.I. et al. Preparation of Liposomal Sanguinarine and Study of Its Cytotoxic Effects against Prostate Cancer Cells. Nanotechnol Russia 15, 230–235 (2020). https://doi.org/10.1134/S199507802002007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507802002007X

Navigation