Skip to main content
Log in

Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Beta-carotene (BC) is a vitamin A precursor and has potential anticancer benefits, but the delivery of BC is hindered by its low solubility and storage instability. To overcome these challenges, this study investigated the use of fabricated cyclodextrin-based nanosponges (CDNS) using different ratios of two cross-linkers, epiclon (EPI) and hexamethylene diisocyanate (HMDI) to form inclusion complex with BC. The ratios of crosslinkers to βCD for two most optimaly encapsulated CDNSs-BC were determined to be 2:1 for EPI and 4:1 for HMDI with loading efficiency of 61.46% and 59.61%, respectively. The charachterization tests were carefully done for two optimal CDNSs. Encapsulation significantly improved the solubility by ~ 10 folds, 30-day storage stability by 40% compared to BCs. The in vitro release of the two encapsulated products showed no burst release. The MTT assay revealed a variable increase in cytotoxic effect in both normal and cancer cells compared to free BC. Overall, the CDNSs appear to be promising carriers for the delivery of BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stevens, G.A., Bennett, J.E., Hennocq, Q., Lu, Y., De-Regil, L.M., Rogers, L., Danaei, G., Li, G., White, R.A., Flaxman, S.R.: Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob. Health 3(9), e528–e536 (2015)

    Article  PubMed  Google Scholar 

  2. Dary, O., Mora, J.O.: Food fortification to reduce vitamin A deficiency: International Vitamin A Consultative Group recommendations. J. Nutr. 132(9), 2927S-2933S (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Eggersdorfer, M., Wyss, A.: Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 652, 18–26 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Van den Berg, H., Faulks, R., Granado, H.F., Hirschberg, J., Olmedilla, B., Sandmann, G., Southon, S., Stahl, W.: The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 80(7), 880–912 (2000)

    Article  Google Scholar 

  5. Boon, C.S., McClements, D.J., Weiss, J., Decker, E.A.: Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50(6), 515–532 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Ribeiro, H.S., Chu, B.-S., Ichikawa, S., Nakajima, M.: Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids 22(1), 12–17 (2008)

    Article  CAS  Google Scholar 

  7. Yuan, Y., Gao, Y., Zhao, J., Mao, L.: Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 41(1), 61–68 (2008)

    Article  CAS  Google Scholar 

  8. Kumar, A., Sahoo, S.K., Padhee, K., Kochar, P.S., Sathapathy, A., Pathak, N.: Review on solubility enhancement techniques for hydrophobic drugs. Pharm. Glob. 3(3), 001–007 (2011)

    Google Scholar 

  9. Mao, L., Wang, D., Liu, F., Gao, Y.: Emulsion design for the delivery of β-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 58(5), 770–784 (2018)

    Article  PubMed  Google Scholar 

  10. Soukoulis, C., Bohn, T.: A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit. Rev. Food Sci. Nutr. 58(1), 1–36 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Yao, M., McClements, D.J., Xiao, H.: Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr. Opin. Food Sci. 2, 14–19 (2015)

    Article  Google Scholar 

  12. Swaminathan, S., Vavia, P.R., Trotta, F., Cavalli, R., Tumbiolo, S., Bertinetti, L., Coluccia, S.: Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 201–211 (2013)

    Article  CAS  Google Scholar 

  13. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15(3–4), 137–142 (2004)

    Article  CAS  Google Scholar 

  14. Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M.: An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 136(1), 186–192 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 153, 361–370 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Li, Q., Pu, H., Tang, P., Tang, B., Sun, Q., Li, H.: Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem. 245, 1062–1069 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Chen, X., Chen, R., Guo, Z., Li, C., Li, P.: The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chem. 101(4), 1580–1584 (2007)

    Article  CAS  Google Scholar 

  18. de Lima Petito, N., da Silva Dias, D., Costa, V.G., Falcão, D.Q., de Lima Araujo, K.G.: Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem. 208, 124–131 (2016)

    Article  PubMed  Google Scholar 

  19. Han, X., Wei, T., Jiang, H., Li, W., Zhang, G.: Enhanced water solubility, stability, and in vitro antitumor activity of ferulic acid by chemical conjugation with amino-β-cyclodextrins. J. Mater. Sci. 55(20), 8694–8709 (2020)

    Article  CAS  Google Scholar 

  20. Yildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E., Uyar, T.: Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J. Mater. Sci. 53(23), 15837–15849 (2018)

    Article  CAS  Google Scholar 

  21. de Oliveira, V.E., Almeida, E.W., Castro, H.V., Edwards, H.G., Dos Santos, H.F., de Oliveira, L.F.C.: Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J. Phys. Chem. A 115(30), 8511–8519 (2011)

    Article  PubMed  Google Scholar 

  22. Hasebe, K., Ando, Y., Chikamatsu, Y., Hayashi, K.: Preparation of cyclodextrin inclusion compounds containing β-carotene as material for drug, food and cosmetics. Patent JP, 62267261, 1987

  23. Mele, A., Mendichi, R., Selva, A., Molnar, P., Toth, G.: Non-covalent associations of cyclomaltooligosaccharides (cyclodextrins) with carotenoids in water. A study on the α-and β-cyclodextrin/ψ, ψ-carotene (lycopene) systems by light scattering, ionspray ionization and tandem mass spectrometry. Carbohydr. Res. 337(12), 1129–1136 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Murao, T., Maruyama, T., Yamamoto, Y.: Preparation of cyclodextrin inclusion compounds containing β-carotene as food dyes and antioxidants. Patent JP, 4244059, 1992

  25. Polyakov, N.E., Leshina, T.V., Konovalova, T.A., Hand, E.O., Kispert, L.D.: Inclusion complexes of carotenoids with cyclodextrins: 1HNMR, EPR, and optical studies. Free Radic. Biol. Med. 36(7), 872–880 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Anandam, S., Selvamuthukumar, S.: Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 49(23), 8140–8153 (2014)

    Article  CAS  Google Scholar 

  27. Deng, J., Chen, Q.J., Li, W., Zuberi, Z., Feng, J.X., Lin, Q.L., Ren, J.L., Luo, F.J., Ding, Q.M., Zeng, X.X.: Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: recent progress from a material and drug delivery. J. Mater. Sci. 1–21 (2021)

  28. Shaw, P.E., Buslig, B.S.: Selective removal of bitter compounds from grapefruit juice and from aqueous solution with cyclodextrin polymers and with Amberlite XAD-4. J. Agric. Food Chem. 34(5), 837–840 (1986)

    Article  CAS  Google Scholar 

  29. Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: effect of water confinement. Soft Matter 9(28), 6457–6464 (2013)

    Article  CAS  Google Scholar 

  30. Liang, W., Yang, C., Zhou, D., Haneoka, H., Nishijima, M., Fukuhara, G., Mori, T., Castiglione, F., Mele, A., Caldera, F.: Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem. Commun. 49(34), 3510–3512 (2013)

    Article  CAS  Google Scholar 

  31. Mamba, B.B., Krause, R.W., Malefetse, T.J., Sithole, S.P.: Degradation studies of β-cyclodextrin polyurethane polymers using soil burial experiments. S. Afr. J. Chem. 61, 133–140 (2008)

    CAS  Google Scholar 

  32. Yallapu, M.M., Jaggi, M., Chauhan, S.C.: β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B 79(1), 113–125 (2010)

    Article  CAS  Google Scholar 

  33. Ansari, K.A., Vavia, P.R., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12(1), 279–286 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darandale, S., Vavia, P.: Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem. 75(3–4), 315–322 (2013)

    Article  CAS  Google Scholar 

  35. Liang, R., Shoemaker, C.F., Yang, X., Zhong, F., Huang, Q.: Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J. Agric. Food Chem. 61(6), 1249–1257 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Sundararajan, M., Thomas, P.A., Venkadeswaran, K., Jeganathan, K., Geraldine, P.: Synthesis and characterization of chrysin-loaded β-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. J. Nanosci. Nanotechnol. 17(12), 8742–8751 (2017)

    Article  CAS  Google Scholar 

  37. Mohamed, M.H., Wilson, L.D., Headley, J.V.: Design and characterization of novel β-cyclodextrin based copolymer materials. Carbohydr. Res. 346(2), 219–229 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Moradi, L., Vasei, M., Dehghan, M.M., Majidi, M., Mohajeri, S.F., Bonakdar, S.: Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials 126, 18–30 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Singh, P., Ren, X., Guo, T., Wu, L., Shakya, S., He, Y., Wang, C., Maharjan, A., Singh, V., Zhang, J.: Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 190, 23–30 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Gholibegloo, E., Mortezazadeh, T., Salehian, F., Ramazani, A., Amanlou, M., Khoobi, M.: Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr. Polym. 213, 70–78 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Vasconcelos, D.A., Kubota, T., Santos, D.C., Araujo, M.V., Teixeira, Z., Gimenez, I.F.: Preparation of Aun quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges. Carbohydr. Polym. 136, 54–62 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. Zha, F., Li, S., Chang, Y.: Preparation and adsorption property of chitosan beads bearing β-cyclodextrin cross-linked by 1,6-hexamethylene diisocyanate. Carbohydr. Polym. 72(3), 456–461 (2008)

    Article  CAS  Google Scholar 

  43. Dora, C.P., Trotta, F., Kushwah, V., Devasari, N., Singh, C., Suresh, S., Jain, S.: Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym. 137, 339–349 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74(2), 193–201 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. De Jong, W.H., Borm, P.J.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133 (2008)

    Article  Google Scholar 

  46. Lembo, D., Swaminathan, S., Donalisio, M., Civra, A., Pastero, L., Aquilano, D., Vavia, P., Trotta, F., Cavalli, R.: Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm. 443(1–2), 262–272 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MY: Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization. OT: Project administration, Supervision, Conceptualization. MK: Conceptualization, Validation, Supervision. YSW: Writing—Review & Editing, Visualization. MAF: Resources. EG: Supervision, Investigation. SF: Investigation.

Corresponding author

Correspondence to Omid Tavakoli.

Ethics declarations

Conflict of interest

This manuscript has not been previously published and is not under consideration/submission in the same or fundamentally similar form in any other journals. No conflict of interest, financial or other, exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, M., Tavakoli, O., Khoobi, M. et al. Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. J Incl Phenom Macrocycl Chem 102, 55–64 (2022). https://doi.org/10.1007/s10847-021-01100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01100-7

Keywords

Navigation