Skip to main content
Log in

Decomposition and exact solutions of three-dimensional nonstationary linearized equations for a viscous fluid

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new exact method for solving three-dimensional linear systems of hydrodynamic equations is described based on decomposing these systems into three simpler equations. It is shown that the general solution to three-dimensional Stokes equations (when there are no mass forces) can be expressed by means of solutions to two independent equations: the heat conduction equation and the Laplace equation. A class of solutions with the linear dependence of velocity components on two space variables is studied, and their physical interpretation is given. Axial flows are considered, and certain hydrodynamic problems are solved. A general solution to three-dimensional Oseen equations is constructed. The linearized equations of motion for a viscoelastic Oldroyd fluid are studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planovskii, A.N. and Nikolaev, P.I., Protsessy i apparaty khimicheskoi i neftekhimicheskoi tekhnologii (Processes and Apparatuses in Chemical and Petrochemical Technology), Moscow: Khimiya, 1987, 3rd ed.

    Google Scholar 

  2. Protsessy i apparaty khimicheskoi tekhnologii. Yavleniya perenosa, makrokinetika, podobie, modelirovanie, proektirovanie. T. 2. Mekhanicheskie i gidromekhanicheskie protsessy (Chemical Engineering Processes and Apparatuses: Transport Phenomena, Macrokinetics, Similarity, Modeling, and Designing, vol. 2: Mechanical and Hydromechanical Processes), Kutepov, A.M., Ed., Moscow: Logos, 2001.

    Google Scholar 

  3. Baranov, D.A. and Kutepov, A.M., Protsessy i apparaty (Processes and Apparatuses), Moscow: Akademiya, 2004.

    Google Scholar 

  4. Butkov, V.V., Chepura, I.V., and Andreev, E.F., Metody fiziko-khimicheskoi gidrodinamiki v protsessakh i apparatakh khimicheskoi tekhnologii (Physicochemical Hydrodynamics Methods in Chemical Engineering Processes and Apparatuses), Kaluga: Noosfera, 2010.

    Google Scholar 

  5. Loitsyanskii, L.G., Mechanics of Liquids and Gases, New York: Begell House, 1996.

    Google Scholar 

  6. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Englewood Cliffs, New Jersey: Prentice Hall, 1965.

    Google Scholar 

  7. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  8. Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London: Taylor & Francis, 2002.

    Google Scholar 

  9. Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1970.

    Google Scholar 

  10. Lamb, G., Gidrodinamika (Hydrodynamics), Moscow: Gos. Izd. Tekn.-Teor. Lit., 1947.

    Google Scholar 

  11. Kochin, N.E., Kibel’, I.A., and Roze, N.V., Teoreticheskaya gidromekhanika (Theoretical Hydromechanics), Moscow: Gos. Izd. Tekn.-Teor. Lit., 1955, part 1.

    Google Scholar 

  12. Sedov, L.I., Mekhanika sploshnoi sredy (Continuous Medium Mechanics), Moscow: Nauka, 1973, vol. 1.

    Google Scholar 

  13. Shkadov, V.Ya. and Zapryanov, Z.D., Techeniya vyazkoi zhidkosti (Viscous Fluid Flows), Moscow: Mosk. Gos. Univ., 1984.

    Google Scholar 

  14. Polyanin, A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton: Chapman & Hall/CRC, 2002.

    Google Scholar 

  15. Polyanin, A.D. and Zaitsev, V.F., Handbook of Nonlinear Partial Differential Equations, Boca Raton, Fla.: Chapman & Hall/CRC, 2012, 2nd ed.

    Google Scholar 

  16. Polyanin, A.D., Exact Solution of Equations of Hydrodynamics and Mass and Heat Transfer, Theor. Found. Chem. Eng., 1993, vol. 27, no. 1, p. 23.

    Google Scholar 

  17. Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact Solutions of the Navier-Stokes Equations with the Linear Dependence of Velocity Components on Two Space Variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, p. 642.

    Article  CAS  Google Scholar 

  18. Polyanin, A.D. and Aristov, S.N., A New Method for Constructing Exact Solutions to Three-Dimensional Navier-Stokes and Euler Equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, p. 885.

    Article  CAS  Google Scholar 

  19. Aristov, S.N. and Polyanin, A.D., Exact Solutions of Unsteady Three-Dimensional Navier-Stokes Equations, Dokl. Phys., 2009, vol. 54, no. 7, p. 316.

    Article  CAS  Google Scholar 

  20. Pukhnachev, V.V., Symmetries in the Navier-Stokes Equations, Usp. Mekh., 2006, vol. 4, no. 1, p. 6.

    Google Scholar 

  21. Polyanin, A.D., Exact Solutions to the Navier-Stokes Equations with Generalized Separation of Variables, Dokl. Phys., 2001, vol. 46, no. 10, p. 726.

    Article  Google Scholar 

  22. Schlichting, H., Boundary-Layer Theory, New York: McGraw-Hill, 1979, 7th ed.

    Google Scholar 

  23. Andreev, V.K., Kaptsov, O.V., Pukhnachev, V.V., and Rodionov, A.A., Primenenie teoretiko-gruppovykh metodov v gidrodinamike (Use of Group-Theoretical Methods in Hydrodynamics), Novosibirsk: Nauka, 1994.

    Google Scholar 

  24. Polyanin, A.D., Exact Solutions and Transformations of the Equations of a Stationary Laminar Boundary Layer, Theor. Found. Chem. Eng., 2001, vol. 35, no. 4, p. 319.

    Article  CAS  Google Scholar 

  25. Polyanin, A.D. and Zaitsev, V.F., Equations of an Unsteady-State Laminar Boundary Layer: General Transformations and Exact Solutions, Theor. Found. Chem. Eng., 2001, vol. 35, no. 6, p. 529.

    Article  CAS  Google Scholar 

  26. Polyanin, A.D., Vyaz’min, A.V., and Sysoev, P.V., Exact Solutions of Navier-Stokes, Boundary-Layer, and Heat-Conduction Equations, Theor. Found. Chem. Eng., 2002, vol. 36, no. 4, p. 346.

    Article  CAS  Google Scholar 

  27. Polyanin, A.D. and Aristov, S.N., Systems of Hydrodynamic Type Equations: Exact Solutions, Transformations, and Nonlinear Stability, Dokl. Phys., 2009, vol. 54, no. 9, p. 429.

    Article  CAS  Google Scholar 

  28. Polyanin, A.D., On the Nonlinear Instability of the Solutions of Hydrodynamic-Type Systems, JETP Lett., 2009, vol. 90, no. 3, p. 217.

    Article  CAS  Google Scholar 

  29. Polyanin, A.D., Nonlinear Instability of the Solutions of the Navier-Stokes Equations: Formulas for Constructing Exact Solutions, Theor. Found. Chem. Eng., 2009, vol. 43, no. 6, p. 881.

    Article  CAS  Google Scholar 

  30. Joseph, D.D. and Liao, T.Y., Potential Flows of Viscous and Viscoelastic Fluids, J. Fluid Mech., 1994, vol. 256, p. 1.

    Article  Google Scholar 

  31. Polyanin, A.D., Zhurov, A.I., and Vyaz’min, A.V., Exact Solutions of Nonlinear Heat- and Mass-Transfer Equations, Theor. Found. Chem. Eng., 2000, vol. 34, no. 5, p. 403.

    Article  CAS  Google Scholar 

  32. Polyanin, A.D., Vyaz’min, A.V., Zhurov, A.I., and Kazenin, D.A., Spravochnik po tochnym resheniyam uravnenii teplo-i massoperenosa (Handbook of Exact Solutions to the Equations of Heat and Mass Transfer), Moscow: Faktorial, 1998.

    Google Scholar 

  33. Agranovich, Yu.Ya. and Sobolevskii, P.E., Flow of a Nonlinear Viscoelastic Fluid, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 3, p. 231.

    Google Scholar 

  34. Orlov, V.P., Stability of the Trivial Solution to the Mathematical Model of a Viscoelastic Fluid, Izv. Vyssh. Uchebn. Zaved., Mat., 1995, no. 3, p. 82.

    Google Scholar 

  35. Araulo, G.M., Menezes, S.B., and Marinho, A.O., Existence of Solutions for an Oldroyd Model of Viscoelastic Fluids, Electronic J. Diff. Equations, 2009, no. 69, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Polyanin.

Additional information

Original Russian Text © A.D. Polyanin, A.V. Vyazmin, 2013, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2013, Vol. 47, No. 2, pp. 158–167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyanin, A.D., Vyazmin, A.V. Decomposition and exact solutions of three-dimensional nonstationary linearized equations for a viscous fluid. Theor Found Chem Eng 47, 114–123 (2013). https://doi.org/10.1134/S0040579513020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579513020061

Keywords

Navigation