Skip to main content
Log in

Solving The Motion Equations of a Viscous Fluid with a Nonlinear Dependence Between a Velocity Vector and some Spatial Variables

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

It is shown that the classes of exact solutions of Navier–Stokes equations with a linear and inversely proportional dependence between velocity components and some spatial variables can be expanded by adding finite perturbations, being power and trigonometric series or their sections on one of the coordinates. An example of single integration of the three-dimensional motion equations a viscous fluid, reduced to an equation for the potential of two velocity components, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Slyozkin, “A Case of Integration of Complete Differential Equations of Motion of Viscous Fluid,” Uchen. Zap. Mosk. Gos. Univ., No. 2, 89–90 (1934).

    Google Scholar 

  2. S. N. Aristov, “An Exact Solution to the Point Source Problem,” Dokl. Phys. 40 (7), 346–348 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  3. C. C. Lin, “Note on Class of Exact Solutions in Magneto–Hydrodynamics,” Arch. Rat. Mech. Anal. 1, 392–395 (1957).

    Article  MathSciNet  Google Scholar 

  4. A. F. Sidorov, “A Class of Solutions of Equations of Gas Dynamics and Natural Convection,” in Mathematics. Mechanics (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  5. S. W. Yuan and A. B. Finkelstein, “Laminar Pipe Flow with Injection and Suction through a Porous Wall,” Trans. ASME, Ser. E 78 (3), 719–724 (1956).

    Google Scholar 

  6. S. N. Netreba, “Spiral–Like Flows of Viscous Incompressible Fluid,” Meteorol. Gidrol., No. 4, 15–24 (1988).

    Google Scholar 

  7. S. N. Aristov, “Stationary Cylindrical Vortex in a Viscous Fluid,” Dokl. Phys. 46 (4), 251–253 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. V. Pukhnachev, “Symmetry in Navier–Stokes Equations,” Usp. Mekh., No. 1, 6–67 (2006).

    Google Scholar 

  9. P. G. Drazin and N. Riley, The Navier–Stokes Equations: A Classification of Flows and Exact Solutions (Cambridge Univ. Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  10. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Application of Theoretical–Group Methods in Fluid Dynamics (Nauka, Novosibirsk, 1994) [in Russian].

    MATH  Google Scholar 

  11. H. Schlichting, Boundary–Layer Theory (McGraw–Hill, New York, 1955).

    MATH  Google Scholar 

  12. G. Hamel, “Spiralförmige Bewegungen zäher Flüssigkeiten,” Jahr.–Ber. Deutsch. Math. Ver. 25, 34–60 (1917).

    MATH  Google Scholar 

  13. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics (Fizmatgiz, Moscow, 1963; John Wiley and Sons, 1964), Vol. 2.

    MATH  Google Scholar 

  14. S. N. Aristov and D. V. Knyazev, “Three–Dimensional Viscous Jet Flow with Plane Free Boundaries,” Fluid Dyn. 52 (2), 215–218 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. N. Aristov, D. V. Knyazev, and A. D. Polyanin, “Exact Solutions of the Navier–Stokes Equations with the Linear Dependence of Velocity Components on Two Space Variables,” Theor. Found. Chem. Eng. 43 (5), 642–662 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Knyazev.

Additional information

Original Russian Text © D.V. Knyazev.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 5, pp. 185–190, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, D.V. Solving The Motion Equations of a Viscous Fluid with a Nonlinear Dependence Between a Velocity Vector and some Spatial Variables. J Appl Mech Tech Phy 59, 928–933 (2018). https://doi.org/10.1134/S0021894418050218

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418050218

Keywords

Navigation