Skip to main content
Log in

A New Class of Exact Solutions to the Navier–Stokes Equations with Allowance for Internal Heat Release

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

New exact solutions to the three-dimensional Navier–Stokes equations, which take into account energy dissipation in the equation of heat transfer in a moving fluid, are presented. The flows of viscous incompressible fluids can both steady and unsteady. The new solutions are based on the Lin–Sidorov–Aristov class of exact solutions. The characteristic feature of the velocity field representation is that it is described by linear forms with respect to two coordinates (horizontal or longitudinal). The coefficients of the linear forms depend on the third coordinate (vertical, or transverse) and time. The fluid pressure and temperature are quadratic forms with a similar structure for the velocity. This family of exact solutions describes the flows of viscous incompressible fluids with a spatial acceleration. In other words, allowance is made for nonlinear effects of inertia forces, which are expressed through the convective derivative of the velocity and temperature vectors in the Navier–Stokes and the heat conduction equations, respectively. Due to the energy dissipation in fluids, two quadratically nonlinear effects compete. This significantly complicates the study of flows, because of which the paper presents formulas describing a creeping flow (the Stokes approximation) and Oseen motion. Thus, the study shows the possibility of constructing exact solutions to the motion equations with mechanical energy dissipation into thermal energy for the full Navier–Stokes equations and for their linearized analogs in the Stokes and Oseen approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. V. Ershkov, E. Yu. Prosviryakov, N. V. Burmasheva, and V. Christianto, Fluid Dyn. Res. 53, 044501 (2021). https://doi.org/10.1088/1873-7005/ac10f0

    Article  ADS  Google Scholar 

  2. S. N. Aristov, D. V. Knyazev, and A. D. Polyanin, Theor. Found. Chem. Eng. 43, 642 (2009). https://doi.org/10.1134/S0040579509050066

    Article  Google Scholar 

  3. P. G. Drazin and N. Riley, The Navier–Stokes Equations: A Classification of Flows and Exact Solutions (Cambridge Univ. Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511526459

  4. V. V. Pukhnachev, Usp. Mekh. 4 (1), 6 (2006).

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, London, 1987).

    Google Scholar 

  6. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Israel Program Sci. Transl., Keter, Jerusalem, 1976).

  7. E. S. Baranovskii, A. A. Domnich, and M. A. Artemov, Fluids 4 (3), 133 (2019). https://doi.org/10.3390/fluids4030133

    Article  ADS  Google Scholar 

  8. E. S. Baranovskii and A. A. Domnich, Differ. Equat. 6, 304 (2020). https://doi.org/10.1134/S0012266120030039

    Article  Google Scholar 

  9. V. B. Betelin and V. A. Galkin, Dokl. Math. 92, 511 (2015). https://doi.org/10.1134/S1064562415040067

    Article  MathSciNet  Google Scholar 

  10. B. A. Altoiz, N. V. Savin, and E. A. Shatagina, Tech. Phys. 59, 649 (2014). https://doi.org/10.1134/S1063784214050028

    Article  Google Scholar 

  11. C. C. Lin, Arch. Ration. Mech. Anal. 1, 391 (1957). https://doi.org/10.1007/BF00298016

    Article  Google Scholar 

  12. A. F. Sidorov, J. Appl. Mech. Tech. Phys. 30, 197 (1989). https://doi.org/10.1007/BF00852164

    Article  ADS  MathSciNet  Google Scholar 

  13. S. N. Aristov, Extended Abstract of Doctoral (Phys. Math.) Dissertation (Vladivostok, 1990).

  14. S. N. Aristov and E. Yu. Prosviryakov, Nelin. Din. 10, 177 (2014). https://doi.org/10.20537/nd1402004

    Article  Google Scholar 

  15. S. N. Aristov and E. Y. Prosviryakov, Russ. Aeronaut. 58, 413 (2015). https://doi.org/10.3103/S1068799815040091

    Article  Google Scholar 

  16. L. S. Goruleva and E. Yu. Prosviryakov, Khim. Fiz. Mezosk. 23, 403 (2021). https://doi.org/10.15350/17270529.2021.4.36

    Article  Google Scholar 

  17. N. V. Burmasheva and E. Yu. Prosviryakov, Tr. Inst. Mat. Mekh. 26 (2), 79 (2020). https://doi.org/10.21538/0134-4889-2020-26-2-79-87

    Article  Google Scholar 

  18. N. M. Zubarev and E. Yu. Prosviryakov, J. Appl. Mech. Tech. Phys. 60, 1031 (2019). https://doi.org/10.1134/S0021894419060075

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Yu. Prosviryakov, Theor. Found. Chem. Eng. 53, 107 (2019). https://doi.org/10.1134/S0040579518060088

    Article  Google Scholar 

  20. E. Yu. Prosviryakov and L. F. Spevak, Theor. Found. Chem. Eng. 52, 765 (2018). https://doi.org/10.1134/S0040579518050391

    Article  Google Scholar 

  21. E. Yu. Prosviryakov, CEUR Workshop Proc. 1825, 164 (2016). http://ceur-ws.org/Vol-1825/p21.pdf.

    Google Scholar 

  22. E. A. Alekseenko, A. V. Gorshkov, and E. Yu. Prosviryakov, Khim. Fiz. Mezosk. 20, 15 (2018).

    Google Scholar 

  23. S. N. Aristov and E. Y. Prosviryakov, Theor. Found. Chem. Eng. 50, 286 (2016). https://doi.org/10.1134/S0040579516030027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Goruleva.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goruleva, L.S., Prosviryakov, E.Y. A New Class of Exact Solutions to the Navier–Stokes Equations with Allowance for Internal Heat Release. Opt. Spectrosc. 130, 365–370 (2022). https://doi.org/10.1134/S0030400X22070037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22070037

Keywords:

Navigation