Skip to main content
Log in

Density-functional investigation of gold cluster anions doped with gallium: Au n Ga (1 ⩽ n ⩽ 8)

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The equilibrium geometric, relative stabilities, electronic and magnetic properties of small Au n Ga clusters (1 ⩽ n ⩽ 8), in comparison with pure gold cluster anions are investigated systematically within the framework of the first-principles density functional calculations at the PW91PW91 level. The calculations reveal that the impure gallium atom changes the structure of pure gold clusters. The most stable structures of Au n Ga (4 ⩽ n ⩽ 8) prefer three-dimensional structures. The VDE, fragmentation energies and the secondorder difference energies and the HOMO–LUMO gaps for the lowest-energy structures of Au n Ga and Au- n+1 (1 ⩽ n ⩽ 8) clusters show an even-odd oscillation along with the cluster size. Meanwhile the above results indicate the doping gallium atom enhance the stability of the clusters. It is must be pointed out that Au2Ga cluster is the most stable. Finally, we research the natural population analysis (NPA) of Au- n+1 (1 ⩽ n ⩽ 8) clusters. The results indicate that Ga atom attracts electron from the Au atom except for the Au Ga–cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Eustis and M. A. ElSayed, Chem. Soc. Rev. 35, 209 (2006).

    Article  CAS  Google Scholar 

  2. A. Moores and F. Goettmann, New J. Chem. 30, 1121 (2006).

    Article  CAS  Google Scholar 

  3. J. R. Salge, G. A. Deluga, and L. D. Schmidt, J. Catal. 235, 69 (2005).

    Article  CAS  Google Scholar 

  4. H. Hakkinen, M. Moseler, O. Kostko, N. Morgner, M. A. Hoffmann, and B. v. Issendorff, Phys. Rev. Lett. 93, 093401 (2004).

    Article  Google Scholar 

  5. E. M. Fernandez, J. M. Soler, I. L. Garzon, and L. C. Balbas, Phys. Rev. B 70, 165403 (2004).

    Article  Google Scholar 

  6. C. Carbone, E. Vescovo, O. Rader, W. Gudat, and W. Eberhardt, Phys. Rev. Lett. 71, 2805 (1993).

    Article  CAS  Google Scholar 

  7. I. P. Hamilton, Chem. Phys. Lett. 390, 517 (2004).

    Article  CAS  Google Scholar 

  8. M. Basham, P. A. Mulheran, and F. Montalenti, Surf. Sci. 565, 289 (2004).

    Article  CAS  Google Scholar 

  9. J. L. Wang, G. H. Wang, and J. J. Zhao, Chem. Phys. Lett. 380, 716 (2003).

    Article  CAS  Google Scholar 

  10. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, and C. Mottet, J. Chem. Phys. 116, 3856 (2002).

    Article  CAS  Google Scholar 

  11. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, New J. Phys. 4, 93.1 (2002).

    Article  Google Scholar 

  12. K. J. Taylor, C. L. PettietteHall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 96, 3319 (1992).

    Article  CAS  Google Scholar 

  13. K. J. T. Noonan, B. H. Gillon, V. Cappello, and D. P. Gates, J. Am. Chem. Soc. 130, 12876 (2008).

    Article  CAS  Google Scholar 

  14. M. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68, 115433 (2003).

    Article  Google Scholar 

  15. A. Yu, Z. J. Liang, J. H. Cho, and F. k Caruso, Nano Lett. 3, 1203 (2003).

    Article  CAS  Google Scholar 

  16. T. Ishidaa, M. Nagaokaa, T. Akitab, and M. Haruta, Angew. Chem. 14, 8456 (2008).

    Google Scholar 

  17. T. Ishida and M. Haruta, Angew. Chem. 46, 7154 (2007).

    Article  CAS  Google Scholar 

  18. M. Haruta, Catal. Today 36, 153 (1997).

    Article  CAS  Google Scholar 

  19. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science 321, 674 (2008).

    Article  CAS  Google Scholar 

  20. M. W. Heaven, A. Dass, P. S. White, K. M. Holt, and R. W. Murray, J. Am. Chem. Soc. 130, 3754 (2008).

    Article  CAS  Google Scholar 

  21. B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009).

    Article  Google Scholar 

  22. M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008).

    Article  Google Scholar 

  23. H. Hakkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A 107, 6168 (2003).

    Article  Google Scholar 

  24. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. Schaaff, and R. L. Whetten, J. Phys. Chem. B 106, 3410 (2002).

    Article  CAS  Google Scholar 

  25. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).

    Article  CAS  Google Scholar 

  26. C. Lu, X. Y. Kuang, Z. W. Lu, A. J. Mao, and Y. M. Ma, J. Phys. Chem. A 115, 9273 (2011).

    Article  CAS  Google Scholar 

  27. S. N. Lanina, D. A. Pichugina, A. F. Shestakov, V. V. Smirnova, S. A. Nikolaeva, K. S. Lanina, A. Yu. Vasil’kova, Fam Tien Zunga, and A. V. Beletskaya, Russ. J. Phys. Chem. A 84, 2133 (2010).

    Article  Google Scholar 

  28. Y. Gao, N. Shao, Y. Pei, and X. C. Zeng, Nano Lett. 10, 1055 (2010).

    Article  CAS  Google Scholar 

  29. T. Jayasekharan and T. K. Ghanty, J. Phys. Chem. C 114, 8787 (2010).

    Article  CAS  Google Scholar 

  30. H. Q. Wang, X. Y. Kuang, and H. F. Li, J. Phys. Chem. A 113, 14022 (2009).

    Article  CAS  Google Scholar 

  31. M. Zhanga, L. M. He, L. X. Zhao, X. J. Feng, W. Cao, and Y. H. Luo, J. Mol. Struct.: THEOCHEM 911, 65 (2009).

    Article  Google Scholar 

  32. V. Kumar, Phys. Rev. B 79, 085423 (2009).

    Article  Google Scholar 

  33. A. K. Kandalam and P. Jena, Phys. Rev. B 74, 205437 (2006).

    Article  Google Scholar 

  34. M. B. Torres, E. M. Fernandez, and L. C. Balbas, Phys. Rev. B 71, 155412 (2005).

    Article  Google Scholar 

  35. X. Li, B. Kiran, L. F. Cui, and L. S. Wang, Phys. Rev. Lett. 95, 253401 (2005).

    Article  Google Scholar 

  36. H. Tanaka, S. Neukermans, E. Janssens, R. E. Silverans, and P. Lievens, J. Chem. Phys. 119, 7115 (2003).

    Article  CAS  Google Scholar 

  37. V. B. Koutecky, J. Burda, R. Mitric, M. Ge, G. Zampella, et al., J. Chem. Phys. 117, 3120 (2002).

    Article  Google Scholar 

  38. C. J. Wang, X. Y. Kuang, H. Q. Wang, H. F. Li, J. B. Gu, and J. Liu, Comput. Theor. Chem. 1002, 31 (2012).

    Article  CAS  Google Scholar 

  39. L. X. Zhao, T. T. Gao, X. J. Feng, X. Liang, Y. M. Lei, and Y. H. Luo, J. Mol. Struct.: Theochem. 895, 92 (2009).

    Article  CAS  Google Scholar 

  40. C. Majumder, A. K. Kandalam, and P. Jena, Phys. Rev. B 74, 205437 (2006).

    Article  Google Scholar 

  41. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. T. Kuhn, H. Weidele, P. Lievens, and R. E. Silverans, Chem. Phys. Lett. 314, 227 (1999).

    Article  CAS  Google Scholar 

  42. M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I. M. L. Billas, and T. P. Martin, J. Chem. Phys. 110, 9915 (1999).

    Article  CAS  Google Scholar 

  43. U. Anandhi and P. R. Sharp, Angew. Chem. 116, 6254 (2004).

    Article  Google Scholar 

  44. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).

    Article  CAS  Google Scholar 

  45. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  46. M. J. Frisch et al., Gaussian03, Revision E.01 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  47. J. Ho, K. M. Ervin, and W. C. Lineberger, J. Chem. Phys. 93, 6987 (1990).

    Article  CAS  Google Scholar 

  48. K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  49. L. X. Zhao, X. J. Feng, T. T. Cao, X. Liang, and Y. H. Luo, Chin. Phys. B 18, 2709 (2009).

    Article  CAS  Google Scholar 

  50. Abdelhamid Soltani and Abdel-Ghani Boudjahem, Comput. Theor. Chem. 1047, 6 (2014).

    Article  CAS  Google Scholar 

  51. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).

    Article  CAS  Google Scholar 

  52. B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. V. Issendorff, H. Hakkinen, M. Moseler, and U. Landman, Chem. Phys. Chem. 8, 157 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-yun Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Xh., Zhang, Cy., Zhang, L. et al. Density-functional investigation of gold cluster anions doped with gallium: Au n Ga (1 ⩽ n ⩽ 8). Russ. J. Phys. Chem. 89, 1853–1862 (2015). https://doi.org/10.1134/S0036024415100349

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415100349

Keywords

Navigation