Skip to main content
Log in

Catecholaminergic neurons of mammalian brain and neuromelanin

  • Review
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The brain neurons synthesizing catecholamines are ones of the most studied populations of nerve cells. The most essential morphological difference of these cells in many mammalian species—the presence of pigment neuromelanin in their cytoplasm. The issue of role of neuromelanin in cell seems important for comparative neurobiology, as it not only is absent in neurons of different transmitter nature, but even in catecholaminergic neurons in some species of laboratory animals, which restricts possibilities of experimental testing of available hypotheses about its functions in norm and in pathology. For the last few years neuromelanin attracts particular interest in the researchers studying neurotoxicity and modulation of Parkinson’s disease. In the presented review there are generalized and analyzed novel data about structure and functions of neuromelanin, as well as discussed is its possible role in pathogenesis of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otellin, V.A., Kucherenko, R.P., Gilerovich, E.G., Usova, I.P., Fedosikhina, L.A., Grigoriev, I.P., and Neokesariiskii, A.A., Morphological reconstructions in brain, caused by a decrease of catecholamine level, Zh. Nevrol. Psychiat., 1984, vol. 84, no. 7, pp. 978–981.

    CAS  Google Scholar 

  2. Tillet, Y. and Kitahama, K., Distribution of central catecholaminergic neurons: a comparison between ungulates, humans and other species, Histol. Histopathol., 1998, vol. 13, no. 4, pp. 1163–1177.

    CAS  PubMed  Google Scholar 

  3. Lorke, D.E., Kwong, W.H., Chan, W.Y., and Yew, D.T., Development of catecholaminergic neurons in the human medulla oblongata, Life Sci., 2003, vol. 73, no. 10, pp. 1315–1331.

    Article  CAS  PubMed  Google Scholar 

  4. Pastukhov, Yu.F., Ekimova, I.V., Guzhova, I.V., Romanova, I.V., and Artyukhina, Z.E., Content of chaperone HSP70 in black substance dopaminergic neurons rises in proteasomal dysfunction, Ross. Fiziol. Zh., 2011, vol. 97, no. 7, pp. 649–660.

    CAS  Google Scholar 

  5. Suckow, S.K., Deichsel, E.L., Ingram, S.L., Morgan, M.M., and Aicher, S.A., Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways, Synapse, 2013, vol. 67, no. 2, pp. 94–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Henny, P., Brown, M.T., Northrop, A., Faunes, M., Ungless, M.A., Magill, P.J., and Bolam, J.P., Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons, Nat. Neurosci., 2012, vol. 15, no. 4, pp. 613–619.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brightwell, J.J. and Taylor, B.K., Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain, Neuroscience, 2009, vol. 160, no. 1, pp. 174–185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Choi, I.Y., Lee, S., and Rivier, C., Novel role of adrenergic neurons in the brain stem in mediating the hypothalamic-pituitary axis hyperactivity caused by prenatal alcohol exposure, Neuroscience, 2008, vol. 155, no. 3, pp. 888–901.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Flügge, G., van Kampen, M., and Mijnster, M.J., Perturbations in brain monoamine systems during stress, Cell Tissue Res., 2004, vol. 315, no. 1, pp. 1–14.

    Article  PubMed  Google Scholar 

  10. Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res., 1974, vol. 66, pp. 235–261.

    Article  Google Scholar 

  11. Dahlström, A. and Fuxe, K., Evidence for the existence of monoamine-containing neurons in the central nervous system. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand., 1964, vol. 62(suppl. 232), pp. 1–55.

    Google Scholar 

  12. Moore, R.Y. and Card, J.P., Noradrenaline-containing neuron systems, Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, Björklund, A. and Hökfelt, T., Eds., Elsevier, Amsterdam, 1984, vol. 2, part I, pp. 123–156.

    Google Scholar 

  13. Albanese, A., Altavista, M.C., and Rossi, P., Organization of central nervous system dopaminergic pathways, J. Neural Transm. Suppl., 1986, vol. 22, pp. 3–17.

    CAS  PubMed  Google Scholar 

  14. Koob, G.F. and Swerdlow, N.R., The functional output of the mesolimbic dopamine system, Ann. N. Y. Acad. Sci., 1988, vol. 537, pp. 216–227.

    Article  CAS  PubMed  Google Scholar 

  15. Ciofi, P., Crowley, W.R., Pillez, A., Schmued, L.L., Tramu, G., and Mazzuca, M., Plasticity in expression of immunoreactivity for neuropeptide Y, enkephalins and neurotensin in the hypothalamic tubero-infundibular dopaminergic system during lactation in mice, J. Neuroendocrinol., 1993, vol. 5, no. 6, pp. 599–602.

    Article  CAS  PubMed  Google Scholar 

  16. Skagerberg, G., Björklund, A., Lindvall, O., and Schmidt, R.H., Origin and termination of the diencephalo-spinal dopamine system in the rat, Brain Res. Bull., 1982, vol. 9, no. 1–6, pp. 237–244.

    Article  CAS  PubMed  Google Scholar 

  17. Sita, L.V., Elias, C.F., and Bittencourt, J.C., Connectivity pattern suggests that incerto-hypothalamic area belongs to the medial hypothalamic system, Neuroscience, 2007, vol. 148, no. 4, pp. 949–969.

    Article  CAS  PubMed  Google Scholar 

  18. Luppi, P.H., Sakai, K., Salvert, D., Berod, A., and Jouvet, M., Periventricular dopaminergic neurons terminating in the neuro-intermediate lobe of the cat hypophysis, J. Comp. Neurol., 1986, vol. 244. no. 2. pp. 204–212.

    Article  PubMed  Google Scholar 

  19. Saino-Saito, S., Sasaki, H., Volpe, B.T., Kobayashi, K., Berlin, R., and Baker, H., Differentiation of the dopaminergic phenotype in the olfactory system of neonatal and adult mice, J. Comp. Neurol., 2004, vol. 479, no. 4, pp. 389–398.

    Article  PubMed  Google Scholar 

  20. Nguyen-Legros, J., Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease, Surg. Radiol. Anat., 1988, vol. 10, no. 2, pp. 137–144.

    Article  CAS  PubMed  Google Scholar 

  21. Bogerts, B., A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker, J. Comp. Neurol., 1981, vol. 197, pp. 63–80.

    Article  CAS  PubMed  Google Scholar 

  22. Saper, C.B. and Petito, C.K., Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups, Brain, 1982, vol. 105,(Pt 1), pp. 87–101.

    Article  CAS  PubMed  Google Scholar 

  23. Baker, K.G., Tork, I., Hornung, J.P., and Halasz, P., The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study, Exp. Brain Res., 1989, vol. 77, no. 2, pp. 257–270.

    Article  CAS  PubMed  Google Scholar 

  24. Bazelon, M., Fenichel, G.M., and Randall, J., Studies on neuromelanin. I. A melanin system in the human adult brainstem, Neurology, 1967, vol. 17, no. 5, pp. 512–519.

    Article  CAS  PubMed  Google Scholar 

  25. Rosengren, E., Linder-Eliasson, E., and Carlsson, A., Detection of 5-S-cysteinyldopamine in human brain, J. Neural. Transm., 1985, vol. 63, no. 3–4, pp. 247–253.

    Article  CAS  PubMed  Google Scholar 

  26. Cowen, D., The melanoneurons of the human cerebellum (nucleus pigmentosus cerebellaris) and homologues in the monkey, J. Neuropathol. Exp. Neurol., 1986, vol. 45, no. 3, pp. 205–221.

    Article  CAS  PubMed  Google Scholar 

  27. Koistinaho, J., Hartikainen, K., Hatanpää, K., and Hervonen, A., Age pigments in different populations of peripheral neurons in vivo and in vitro, Adv. Exp. Med. Biol., 1989, vol. 266, pp. 49–59.

    CAS  PubMed  Google Scholar 

  28. Adler, A., Melanin pigment in the central nervous system of vertebrates, J. Comp. Neurol., 1939, vol. 70, pp. 315–329.

    Article  CAS  Google Scholar 

  29. Lindquist, N.G., Larsson, B.S., and Lydén-Sokolowski, A., Autoradiography of [14C] paraquat or [14C] diquat in frogs and mice: accumulation in neuromelanin, Neurosci. Lett., 1988, vol. 93, no. 1, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Zucca, F.A., Giaveri, G., Gallorini, M., Albertini, A., Toscani, M., Pezzoli, G., Lucius, R., Wilms, H., Sulzer, D., Ito, S., Wakamatsu, K., and Zecca, L., The neuromelanin of human substantia nigra: physiological and pathogenic aspects, Pigment Cell Res., 2004, vol. 17, no. 6, pp. 610–617.

    Article  CAS  PubMed  Google Scholar 

  31. Kemali, M. and Gioffré, D., Anatomical localization of neuromelanin in the brains of the frog and tadpole. Ultrastructural comparison of neuromelanin with other melanins, J. Anat., 1985, vol. 142, pp. 73–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Barden, H. and Levine, S., Histochemical observations on rodent brain melanin, Brain Res. Bull., 1983, vol. 10, no. 6, pp. 847–851.

    Article  CAS  PubMed  Google Scholar 

  33. Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., and Tampellini, D., The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease, FEBS Lett., 2002, vol. 510, no. 3, pp. 216–220.

    Article  CAS  PubMed  Google Scholar 

  34. Muthane, U.B., Chickabasaviah, Y.T., Henderson, J., Kingsbury, A.E., Kilford, L., Shankar, S.K., Subbakrishna, D.K., and Lees, A.J., Melanized nigral neuronal numbers in Nigerian and British individuals, Mov. Disord., 2006, vol. 21, no. 8, pp. 1239–1241.

    Article  PubMed  Google Scholar 

  35. Grigoriev, I.P., Vasilenko, M.S., Sukhorukova, E.G., and Korzhevsky, D.E., Use of various antibodies to tyrosine hydroxylase for study of catecholaminergic systems of mammalian brain, Morfologiya, 2010, vol. 138, no. 6, pp. 60–63.

    Google Scholar 

  36. Grigoriev, I.P., Sukhorukova, E.G., Kolos, E.A., and Korzhevsky, D.A., Neuromelanin in the black substance neurons not containing tyrosine hydroxylase, Morfologiya, 2012, vol. 141, no. 2, pp. 65–67.

    Google Scholar 

  37. Sukhorukova, E.G., Nuclear protein NeuN in black substance neurons of human brain, Morfologiya, 2013, vol. 143, no. 2, pp. 78–80.

    CAS  Google Scholar 

  38. Beach, T.G., Sue, L.I., Walker, D.G., Lue, L.F., Connor, D.J., Caviness, J.N., Sabbagh, M.N., and Adler, C.H., Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits, Acta Neuropathol., 2007, vol. 114, no. 4, pp. 419–424.

    Article  PubMed  Google Scholar 

  39. Kastner, A., Hirsch, E.C., Lejeune, F., Javoy-Agid, F., Rascol, O., and Agid, Y., Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content?, J. Neurochem., 1992, vol. 59, pp. 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  40. Duffy, P.E. and Tennyson, V.M., Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease, J. Neuropathol. Exp. Neurol., 1965, vol. 24, pp. 398–414.

    Article  Google Scholar 

  41. Odh, G., Carstam, R., Paulson, J., Wittbjer, A., Rosengren, E., and Rorsman, H., Neuromelanin of the human substantia nigra: a mixed-type melanin, J. Neurochem., 1994, vol. 62, no. 5, pp. 2030–2036.

    Article  CAS  PubMed  Google Scholar 

  42. Wakamatsu, K., Fujikawa, K., Zucca, F.A., Zecca, L., and Ito, S., The structure of neuromelanin as studied by chemical degradative methods, J. Neurochem., 2003, vol. 86, no. 4, pp. 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  43. Bush, W.D., Garguilo, J., Zucca, F.A., Albertini, A., Zecca, L., Edwards, G.S., Nemanich, R.J., and Simon, J.D., The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 40, pp. 14785–14789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zecca, L., Mecacci, C., Seraglia, R., and Parati, E., The chemical characterization of melanin contained in substantia nigra of human brain, Biochim. Biophys. Acta, 1992, vol. 1138, no. 1, pp. 6–10.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, J., Moss, S.C., and Eisner, M., X-ray characterization of melanins-II, Pigment Cell Res., 1994, vol. 7, no. 4, pp. 263–273.

    Article  CAS  PubMed  Google Scholar 

  46. Zecca, L., Shima, T., Stroppolo, A., Goj, C., Battiston, G.A., Gerbasi, R., Sarna, T., and Swartz, H.M., Interaction of neuromelanin and iron in substantia nigra and other areas of the human brain, Neuroscience, 1996, vol. 73, no. 2, pp. 407–415.

    Article  CAS  PubMed  Google Scholar 

  47. Dzierzega-Lecznar, A., Kurkiewicz, S., Stepien, K., Chodurek, E., Wilczok, T., Arzberger, T., Riederer, P., and Gerlach, M., GC/MS analysis of thermally degraded neuromelanin from the human substantia nigra, J. Am. Soc. Mass Spectrom., 2004, vol. 15, no. 6, pp. 920–926.

    Article  CAS  PubMed  Google Scholar 

  48. Zecca, L., Costi, P., Mecacci, C., Ito, S., Terreni, M., and Sonnino, S., The interaction of human substantia nigra neuromelanin with lipids and peptides, J. Neurochem., 2000, vol. 74, no. 4, pp. 1758–1765.

    Article  CAS  PubMed  Google Scholar 

  49. Ward, W.C., Guan, Z., Zucca, F.A., Fariello, R.G., Kordestani, R., Zecca, L., Raetz, C.R., and Simon, J.D., Identification and quantification of dolichol and dolichoic acid in neuromelanin from substantia nigra of the human brain, J. Lipid Res., 2007, vol. 48, no. 7, pp. 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  50. Tief, K., Schmidt, A., and Beermann, F., New evidence for presence of tyrosinase in substantia nigra, forebrain and midbrain, Brain Res. Mol. Brain Res., 1998, vol. 53, no. 1–2, pp. 307–310.

    Article  CAS  PubMed  Google Scholar 

  51. Ikemoto, K., Nagatsu, I., Ito, S., King, R.A., Nishimura, A., and Nagatsu, T., Does tyrosinase exist in neuromelanin-pigmented neurons in the human substantia nigra?, Neurosci. Lett., 1998, vol. 253, no. 3, pp. 198–200.

    Article  CAS  PubMed  Google Scholar 

  52. Foley, J.M. and Baxter, D., On the nature of pigment granules in the cell of the locus coeruleus and substantia nigra, J. Neuropathol. Exp. Neurol., 1958, vol. 17, no. 4, pp. 586–598.

    Article  CAS  PubMed  Google Scholar 

  53. Haavik, J., Almas, B., and Flatmark, T., Generation of reactive oxygen species by tyrosine hydroxylase: a possible contribution to the degeneration of dopaminergic neurons, J. Neurochem., 1997, vol. 68, no. 1, pp. 328–332.

    Article  CAS  PubMed  Google Scholar 

  54. Okun, M.R., The role of peroxidase in neuromelanin synthesis: a review, Physiol. Chem. Phys. Med. NMR., 1997, vol. 29, no. 1, pp. 15–22.

    CAS  PubMed  Google Scholar 

  55. Hastings, T.G., Enzymatic oxidation of dopamine: the role of prostaglandin H synthase, J. Neurochem., 1995, vol. 64, no. 2, pp. 919–924.

    Article  CAS  PubMed  Google Scholar 

  56. Matsunaga, J., Sinha, D., Pannell, L., Santis, C., Solano, F., Wistow, G.J., and Hearing, V.J., Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines, J. Biol. Chem., 1999, vol. 274, no. 6, pp. 3268–3271.

    Article  CAS  PubMed  Google Scholar 

  57. Fornstedt, B., Rosengren, E., and Carlsson, A., Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species, Neuropharmacology, 1986, vol. 25, no. 4, pp. 451–454.

    Article  CAS  PubMed  Google Scholar 

  58. Zecca, L., Zucca, F.A., Wilms, H., and Sulzer, D., Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics, Trends Neurosci., 2003, vol. 26, no. 11, pp. 578–580.

    Article  CAS  PubMed  Google Scholar 

  59. Zecca, L., Gallorini, M., Schunemann, V., Trautwein, A.X., Gerlach, M., Riederer, P., Vezzoni, P., and Tampellini, D., Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes, J. Neurochem., 2001, vol. 76, no. 6, pp. 1766–1773.

    Article  CAS  PubMed  Google Scholar 

  60. Griffiths, P.D., Dobson, B.R., Jones, G.R., and Clarke, D.T., Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy, Brain, 1999, vol. 122,(Pt 4), pp. 667–673.

    Article  PubMed  Google Scholar 

  61. Sofic, E., Paulus, W., Jellinger, K., Riederer, P., and Youdim, M.B., Selective increase of iron in substantia nigra zone compacta of parkinsonian brain, J. Neurochem., 1991, vol. 56, pp. 978–982.

    Article  CAS  PubMed  Google Scholar 

  62. Korzhevsky, D.E., Sukhorukova, E.G., and Grigoriev, I.P., Distribution of iron in microanatomical structures of human brain black substances, Korsakov Zh. Nevrol. Psychiat., 2013, vol. 113, no. 6, pp. 70–73.

    Google Scholar 

  63. Sukhorukova, E.G., Grigoriev, I.P., Kirik, O.V., Alekseeva, O.S., and Korzhevsky, D.E., Intranuclear iron localization in mammalian brain neurons, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, no. 3, pp. 236–238.

    CAS  PubMed  Google Scholar 

  64. Zareba, M., Bober, A., Korytowski, W., Zecca, L., and Sarna, T., The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems, Biochim. Biophys. Acta, 1995, vol. 1271, no. 2–3, pp. 343–348.

    Article  PubMed  Google Scholar 

  65. Kienzl, E., Jellinger, K., Stachelberger, H., and Linert, W., Iron as a catalyst for oxidative stress in the pathogenesis of Parkinson’s disease?, Life Sci., 1999, vol. 65, no. 18–19, pp. 1973–1976.

    Article  CAS  PubMed  Google Scholar 

  66. Mårs, U. and Larsson, B.S., Pheomelanin as a binding site for drugs and chemicals, Pigment Cell. Res., 1999, vol. 12, no. 4, pp. 266–272.

    Article  PubMed  Google Scholar 

  67. Ye, T., Hong, L., Garguilo, J., Pawlak, A., Edwards, G.S., Nemanich, R.J., Sarna, T., and Simon, J.D., Photoionization thresholds of melanins obtained from free electron laser-photoelectron emission microscopy, femtosecond transient absorption spectroscopy and electron paramagnetic resonance measurements of oxygen photoconsumption, Photochem. Photobiol., 2006, vol. 82, no. 3, pp. 733–737.

    Article  CAS  PubMed  Google Scholar 

  68. Fasano, M., Bergamasco, B., and Lopiano, L., Modifications of the iron-neuromelanin system in Parkinson’s disease, J. Neurochem., 2006, vol. 96, no. 4, pp. 909–916.

    Article  CAS  PubMed  Google Scholar 

  69. Wilms, H., Rosenstiel, P., Sievers, J., Deuschl, G., Zecca, L., and Lucius, R., Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease, FASEB J., 2003, vol. 17, no. 3, pp. 500–502.

    CAS  PubMed  Google Scholar 

  70. Khaindrava, V.G., Kozina, E.A., Kudrin, V.S., Kucheryanu, V.G., Klodt, P.M., Narkevich, V.B., Bocharov, E.V., Nanaev, A.K., Kryzhanovsky, G.N., Raevsky, K.S., and Ugrumov, M.V., Experimental modeling of clinical and preclinical stages of Parkinson’s disease, Byull. Exper. Biol. Med., 2010, vol. 150, no. 11, pp. 495–498.

    Google Scholar 

  71. Ugrumov, M.V., Khaindrava, V.G., Kozina, E.A., Kucheryanu, V.G., Bocharov, E.V., Kryzhanovsky, G.N., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Raevsky, K.S., and Pronina, T.S., Modeling of presymptomatic and symptomatic stages of parkinsonism in mice, Neuroscience, 2011, vol. 181, pp. 175–188.

    Article  CAS  PubMed  Google Scholar 

  72. D’Amato, R.J., Lipman, Z.P., and Snyder, S.H., Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin, Science, 1986, vol. 231, no. 4741, pp. 987–989.

    Article  PubMed  Google Scholar 

  73. Salazar, M., Sokoloski, T.D., and Patil, P.N., Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules, Fed. Proc., 1978, vol. 37, no. 10, pp. 2403–2407.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Alekseeva.

Additional information

Original Russian Text © E.G. Sukhorukova, O.S. Alekseeva, D.E. Korzhevsky, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 5, pp. 336–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukova, E.G., Alekseeva, O.S. & Korzhevsky, D.E. Catecholaminergic neurons of mammalian brain and neuromelanin. J Evol Biochem Phys 50, 383–391 (2014). https://doi.org/10.1134/S0022093014050020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014050020

Kew words

Navigation