Skip to main content
Log in

Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Multiple reports have documented an age-related loss, estimated at about 10% per decade, of the pigmented neurons in the substantia nigra. This is associated with motor dysfunction, including bradykinesia, stooped posture and gait disturbance. As microglia are activated by cell death and neuromelanin pigment, we hypothesized that there should be a significant microglial reaction in normal aging human substantia nigra. Sections of substantia nigra from elderly subjects (N = 15; mean 81.3; SD 7.0) and younger subjects (N = 7; mean 30.3; SD = 8.7), all of which had no specific neurologically or neuropathologically defined disorders, were stained immunohistochemically for MHC Class II and the area occupied by microglia was quantified in substantia nigra pars compacta. All elderly subjects showed a pronounced microglial reaction in the substantia nigra, with frequent, intensely stained hypertrophic microglia, while immunoreactive nigral microglia were much less frequent in the younger subjects. Quantification showed that in older subjects, the percentage of substantia nigra area occupied by microglial bodies and processes was significantly greater than for younger subjects (mean 19.6 vs. 3.6; P = 0.005). Extraneuronal neuromelanin deposits were present in all the older subjects but were absent or rare in the younger subjects. The neuromelanin deposit abundance score in the older subjects correlated significantly with the area occupied by immunoreactive microglia. The marked microglial reaction in normal aging human substantia nigra, together with the previously reported 35–80% pigmented neuron loss, indicates the presence of a powerful pathologic process that may be additive with specific age-related neurodegenerative diseases, including Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agid Y, Blin J (1987) Nerve cell death in degenerative diseases of the central nervous system: clinical aspects. Ciba Found Symp 126:3–29

    PubMed  CAS  Google Scholar 

  2. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the Parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    Article  PubMed  CAS  Google Scholar 

  3. Barcia C, Fernandez BA, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418

    Article  PubMed  Google Scholar 

  4. Beach TG, Tago H, Nagai T, Kimura H, McGeer PL, McGeer EG (1987) Perfusion–fixation of the human brain for immunohistochemistry: comparison with immersion–fixation. J Neurosci Methods 19:183–192

    Article  PubMed  CAS  Google Scholar 

  5. Beach TG, Walker DG, Sue LI, Newell A, Adler CC, Joyce JN (2004) Substantia nigra Marinesco bodies are associated with decreased striatal expression of dopaminergic markers. J Neuropathol Exp Neurol 63:329–337

    PubMed  CAS  Google Scholar 

  6. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  7. Booij J, Bergmans P, Winogrodzka A, Speelman JD, Wolters EC (2001) Imaging of dopamine transporters with [123I]FP-CIT SPECT does not suggest a significant effect of age on the symptomatic threshold of disease in Parkinson’s disease. Synapse 39:101–108

    Article  PubMed  CAS  Google Scholar 

  8. Bower JH, Maraganore DM, Peterson BJ, Ahlskog JE, Rocca WA (2006) Immunologic diseases, anti-inflammatory drugs, and Parkinson disease: a case-control study. Neurology 67:494–496

    Article  PubMed  CAS  Google Scholar 

  9. Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291

    Article  PubMed  CAS  Google Scholar 

  10. Chen EY, Kallwitz E, Leff SE, Cochran EJ, Mufson EJ, Kordower JH, Mandel RJ (2000) Age-related decreases in GTP-cyclohydrolase-I immunoreactive neurons in the monkey and human substantia nigra. J Comp Neurol 426:534–548

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967

    Article  PubMed  CAS  Google Scholar 

  12. Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214

    Article  PubMed  CAS  Google Scholar 

  13. Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB (2005) Microglial inflammation in the Parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2:14

    Article  PubMed  CAS  Google Scholar 

  14. Double KL, Zecca L, Costi P, Mauer M, Griesinger C, Ito S, Ben-Shachar D, Bringmann G, Fariello RG, Riederer P, Gerlach M (2000) Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. J Neurochem 75:2583–2589

    Article  PubMed  CAS  Google Scholar 

  15. Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401:253–265

    Article  PubMed  CAS  Google Scholar 

  16. Enochs WS, Sarna T, Zecca L, Riley PA, Swartz HM (1994) The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson’s disease: a hypothesis. J Neural Transm Park Dis Dement Sect 7:83–100

    Article  PubMed  CAS  Google Scholar 

  17. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  18. Felten DL, Felten SY, Steece-Collier K, Date I, Clemens JA (1992) Age-related decline in the dopaminergic nigrostriatal system: the oxidative hypothesis and protective strategies. Ann Neurol 32(Suppl):S133-S136

    Article  PubMed  Google Scholar 

  19. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 24:183–193

    Article  PubMed  CAS  Google Scholar 

  20. Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177

    Article  PubMed  CAS  Google Scholar 

  21. Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  PubMed  CAS  Google Scholar 

  22. Hernan MA, Logroscino G, Garcia Rodriguez LA (2006) Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology 66:1097–1099

    Article  PubMed  Google Scholar 

  23. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  PubMed  CAS  Google Scholar 

  24. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol (Berl) 106:518–526

    Article  CAS  Google Scholar 

  25. Irwin I, DeLanney LE, McNeill T, Chan P, Forno LS, Murphy GM Jr, Di Monte DA, Sandy MS, Langston JW (1994) Aging and the nigrostriatal dopamine system: a non-human primate study. Neurodegeneration 3:251–265

    PubMed  CAS  Google Scholar 

  26. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  PubMed  CAS  Google Scholar 

  27. Jellinger KA, Mizuno Y (2003) Parkinson disease. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Los Angeles, pp 159–185

    Google Scholar 

  28. Kaufman MJ, Madras BK (1993) [3H]CFT ([3H]WIN 35,428) accumulation in dopamine regions of monkey brain: comparison of a mature and an aged monkey. Brain Res 611:322–325

    Article  PubMed  CAS  Google Scholar 

  29. Keller JN, Hanni KB, Markesbery WR (2000) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113:61–70

    Article  PubMed  CAS  Google Scholar 

  30. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  31. Ma SY, Roytt M, Collan Y, Rinne JO (1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    Article  PubMed  CAS  Google Scholar 

  32. Mann DM, Yates PO, Marcyniuk B (1984) Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 3:199–205

    PubMed  CAS  Google Scholar 

  33. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  CAS  Google Scholar 

  34. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in Parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  PubMed  CAS  Google Scholar 

  35. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    PubMed  CAS  Google Scholar 

  36. McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(Suppl 2):S1–S6

    PubMed  CAS  Google Scholar 

  37. McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34:33–35

    PubMed  CAS  Google Scholar 

  38. McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  PubMed  CAS  Google Scholar 

  39. McNaught KS, Olanow CW (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann Neurol 53(Suppl 3):S73–S84

    Article  PubMed  CAS  Google Scholar 

  40. McRitchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144:202–213

    Article  PubMed  CAS  Google Scholar 

  41. Meng SZ, Ozawa Y, Itoh M, Takashima S (1999) Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia. Brain Res 843:136–144

    Article  PubMed  CAS  Google Scholar 

  42. Miller RJ, Wilson SM (2003) Neurological disease: UPS stops delivering! Trends Pharmacol Sci 24:18–23

    Article  PubMed  CAS  Google Scholar 

  43. Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  PubMed  CAS  Google Scholar 

  44. Mozley PD, Acton PD, Barraclough ED, Plossl K, Gur RC, Alavi A, Mathur A, Saffer J, Kung HF (1999) Effects of age on dopamine transporters in healthy humans. J Nucl Med 40:1812–1817

    PubMed  CAS  Google Scholar 

  45. Mozley PD, Kim HJ, Gur RC, Tatsch K, Muenz LR, McElgin WT, Kung MP, Mu M, Myers AM, Kung HF (1996) Iodine-123-IPT SPECT imaging of CNS dopamine transporters: nonlinear effects of normal aging on striatal uptake values. J Nucl Med 37:1965–1970

    PubMed  CAS  Google Scholar 

  46. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, Neumeister A, Praschak-Rieder N, Angelberger P, Brucke T (2000) Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 41:36–44

    PubMed  CAS  Google Scholar 

  47. Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, Davis D, Hardman J, Launer L, Masaki K, Tanner CM, White LR (2004) Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 56:532–539

    Article  PubMed  Google Scholar 

  48. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    Article  PubMed  CAS  Google Scholar 

  49. Siddiqi ZA, Peters A (1999) The effect of aging on pars compacta of the substantia nigra in rhesus monkey. J Neuropathol Exp Neurol 58:903–920

    PubMed  CAS  Google Scholar 

  50. Thiessen B, Rajput AH, Laverty W, Desai H (1990) Age, environments, and the number of substantia nigra neurons. Adv Neurol 53:201–206

    PubMed  CAS  Google Scholar 

  51. Tissingh G, Bergmans P, Booij J, Winogrodzka A, Stoof JC, Wolters EC, Van Royen EA (1997) [123I]beta-CIT single-photon emission tomography in Parkinson’s disease reveals a smaller decline in dopamine transporters with age than in controls. Eur J Nucl Med 24:1171–1174

    PubMed  CAS  Google Scholar 

  52. Ton TG, Heckbert SR, Longstreth WT Jr, Rossing MA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord 21:964–969

    Article  PubMed  Google Scholar 

  53. Tooyama I, McGeer EG, Kawamata T, Kimura H, McGeer PL (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson’s disease. Brain Res 656:165–168

    Article  PubMed  CAS  Google Scholar 

  54. van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Wallace E, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Charney DS, Hoffer PB (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CITSPECT. J Nucl Med 36:1175–1181

    PubMed  Google Scholar 

  55. van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, Innis RB (2002) Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 10:36–43

    Article  PubMed  Google Scholar 

  56. Villares JC, Stavale JN (2001) Age-related changes in the N-methyl-d-aspartate receptor binding sites within the human basal ganglia. Exp Neurol 171:391–404

    Article  PubMed  CAS  Google Scholar 

  57. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ, Hitzemann R, Smith G, Fields SD, Gur R (1996) Dopamine transporters decrease with age. J Nucl Med 37:554–559

    PubMed  CAS  Google Scholar 

  58. Weibel ER (1963) Principles and methods for the morphometric study of the lung and other organs. Lab Invest 12:131–155

    PubMed  CAS  Google Scholar 

  59. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    PubMed  CAS  Google Scholar 

  60. Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG (2006) A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 67:S8–S11

    PubMed  CAS  Google Scholar 

  61. Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by grants to the Sun Health Research Institute Brain Donation Program and the Arizona Parkinson’s Disease Consortium by the Michael J. Fox Foundation for Parkinson’s Research (The Prescott Family Initiative), the Arizona Biomedical Research Commission (contracts 4001, 0011 and 05-901) and the National Institute on Aging (P30 AG19610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Beach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beach, T.G., Sue, L.I., Walker, D.G. et al. Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114, 419–424 (2007). https://doi.org/10.1007/s00401-007-0250-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0250-5

Keywords

Navigation