Skip to main content

Neuromelanin and Parkinson’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dark pigmented organelles, present in catecholaminergic neurons in specific brain regions, are indicated with the term neuromelanin (NM). They are complex structures, mainly comprised by granules of melanin polymer, closely associated with peptide and lipid components. Although NM is present in several animals, it is considered as a unique feature of the man due to the extremely higher degree of pigmentation, even in comparison to other primates. For a long time NM was considered an inert cellular waste product of poor interest that in the absence of mechanism of removal accumulates during the entire lifespan. Just recently, NM has received renewed attention for its role in Parkinson’s disease (PD), where a selective death of the NM-containing neurons of the substantia nigra (SN) pars compacta is observed, while nonpigmented neurons are mostly spared. A physiological accumulation of NM seems to be a protective phenomenon, which prevents several neurotoxic processes. In particular, in dopaminergic neurons of SN, where no ferritin has been detected, NM appears to function as an iron storage system. However, in PD patients NM released by dying neurons can trigger a vicious circle of neuroinflammation and ensuing neuronal death. This chapter presents the structure, the production, and the development of NM, as well as the recent hypotheses about physiological NM role and its behavior in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-AHPEA:

4-amino-3-hydroxyphenylethylamine

AFM:

Atomic force microscopy

DA:

Dopamine

DAQ:

Dopaminoquinone

DOPA:

Dihydroxyphenylalanine

DQ:

DOPA-quinone

FEL:

Free-electron laser

NM:

Neuromelanin

PD:

Parkinson’s disease

PDCA:

Pyrrole-2,3-dicarboxylic acid

PEEM:

Photoelectron emission microscopy

PTCA:

Pyrrole-2,3,5-tricarboxylic acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

SN:

Substantia nigra

TDCA:

Thiazole-4,5-dicarboxylic acid

TTCA:

Thiazole-2,4,5-tricarboxylic acid

References

  • Adler, A. (1939). Melanin pigment in the central nervous system of vertebrates. The Journal of Comparative Neurology, 70, 315–329.

    Article  CAS  Google Scholar 

  • Adler, A. (1942). Melanin pigment in the brain of the gorilla. The Journal of Comparative Neurology, 76, 501–507.

    Article  CAS  Google Scholar 

  • Agrup, G., Hansson, C., Rorsman, H., & Rosengren, E. (1982). The effect of cysteine on oxidation of tyrosine, dopa, and cysteinyldopas. Archives of Dermatological Research, 272, 103–115.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, M., Appelkvist, E. L., Kristensson, K., & Dallner, G. (1987). Distribution of dolichol and dolichyl phosphate in human brain. Journal of Neurochemistry, 49, 685–691.

    Article  CAS  PubMed  Google Scholar 

  • Bazelon, M., Fenichel, G. M., & Randall, J. (1967). Studies on Neuromelanin. I. A melanin system in the human adult brainstem. Neurology, 17, 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, J. M., Ford, D., Swerdlow, A. J., Armstrong, B. K., Cristofolini, M., Elwood, J. M., Green, A., Holly, E. A., Mack, T., Mackie, R. M., Osterlind, A., Walter, S. D., Peto, J., & Easton, D. F. (1995). Risk of cutaneous melanoma associated with pigmentation characteristics and freckling: Systematic overview of 10 case–control studies. International Journal of Cancer, 62, 367–376.

    Article  CAS  Google Scholar 

  • Bogerts, B. (1981). A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. The Journal of Comparative Neurology, 197, 63–80.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    Article  PubMed  Google Scholar 

  • Bridelli, M. G., Tampellini, D., & Zecca, L. (1999). The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Letters, 457, 8–22.

    Article  Google Scholar 

  • Brown, J. O. (1943). Pigmentation in the substantia nigra and locus coeruleus in certain carnivores. The Journal of Comparative Neurology, 79, 393–405.

    Article  CAS  Google Scholar 

  • Bush, W. D., Garguilo, J., Zucca, F. A., Albertini, A., Zecca, L., Edwards, G. S., Nemanich, R. J., & Simon, J. D. (2006). The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proceedings of the National Academy of Sciences USA, 103, 14785–14789.

    Article  CAS  Google Scholar 

  • Calne, D. B., Snow, B. J., & Lee, C. (1992). Criteria for diagnosing Parkinson’s disease. Annals of Neurology, 32(Suppl), 125–127.

    Article  Google Scholar 

  • Chen, H., Zhang, S. M., Hernán, M. A., Schwarzschild, M. A., Willett, W. C., Colditz, G. A., Speizer, F. E., & Ascherio, A. (2003). Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Archives of Neurology, 60, 1059–1064.

    Article  PubMed  Google Scholar 

  • Crippa, P. R., Eisner, M., Morante, S., Stellato, F., Vicentin, F. C., & Zecca, L. (2010). An XAS study of the sulfur environment in human neuromelanin and its synthetic analogs. European Biophysics Journal, 39, 959–970.

    Article  PubMed  Google Scholar 

  • D’Amato, R. J., Lipman, Z. P., & Snyder, S. H. (1986). Selectivity of the parkinsonian neurotoxin MPTP: Toxic metabolite MPP+ binds to neuromelanin. Science, 231, 987–989.

    Article  PubMed  Google Scholar 

  • Dedov, V. N., Griffiths, F. M., Garner, B., Halliday, G. M., & Double, K. L. (2007). Lipid content determines aggregation of neuromelanin granules in vitro. Journal of Neural Transmission, 72(Suppl), 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., & Marsden, C. D. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. Journal of Neurochemistry, 52, 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L. (2012). Neuronal vulnerability in Parkinson’s disease. Parkinsonism & Related Disorders, 18(Suppl 1), 52–54.

    Article  Google Scholar 

  • Double, K. L., Zecca, L., Costi, P., Mauer, M., Griesinger, C., Ito, S., Ben-Shachar, D., Bringmann, G., Fariello, R. G., Riederer, P., & Gerlach, M. (2000). Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. Journal of Neurochemistry, 75, 2583–2589.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L., Gerlach, M., Schunemann, V., Trautwein, A. X., Zecca, L., Gallorini, M., Youdim, M. B., Riederer, P., & Ben-Shachar, D. (2003). Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochemical Pharmacology, 66, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L., Dedov, V. N., Fedorow, H., Kettle, E., Halliday, G. M., Garner, B., & Brunk, U. T. (2008). The comparative biology of neuromelanin and lipofuscin in the human brain. Cellular and Molecular Life Sciences, 65, 1669–1682.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, P. E., & Tennyson, V. M. (1965). Phase and electron microscopic observations of lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease. Journal of Neuropathology and Experimental Neurology, 24, 398–414.

    Article  Google Scholar 

  • Fasano, M., Bergamasco, B., & Lopiano, L. (2006). Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. Journal of Neural Transmission, 113, 769–774.

    Article  CAS  PubMed  Google Scholar 

  • Faucheux, B. A., Martin, M. E., Beaumont, C., Hauw, J. J., Agid, Y., & Hirsch, E. C. (2003). Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. Journal of Neurochemistry, 86, 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  • Fedorow, H., Tribl, F., Halliday, G., Gerlach, M., Riederer, P., & Double, K. L. (2005a). Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to Parkinson’s disease. Progress in Neurobiology, 75, 109–124.

    Article  CAS  PubMed  Google Scholar 

  • Fedorow, H., Pickford, R., Hook, J., Double, K. L., Halliday, G. M., Gerlach, M., Riederer, P., & Garner, B. (2005b). Dolichol is the major lipid in human substantia nigra neuromelanin. Journal of Neurochemistry, 92, 990–995.

    Article  CAS  PubMed  Google Scholar 

  • Fedorow, H., Pickford, R., Kettle, E., Cartwright, M., Halliday, G. M., Gerlach, M., Riederer, P., Garner, B., & Double, K. L. (2006). Investigation of the lipid component of neuromelanin. Journal of Neural Transmission, 113, 735–739.

    Article  CAS  PubMed  Google Scholar 

  • Foley, J. M., & Baxter, D. (1958). On the nature of pigment granules in the cell of the locus coeruleus and substantia nigra. Journal of Neuropathology and Experimental Neurology, 17, 586–598.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Simon, K. C., Han, J., Schwarzschild, M. A., & Ascherio, A. (2009). Genetic determinants of hair color and Parkinson’s disease. Annals of Neurology, 65, 76–82.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao, H. M., Zhou, H., Zhang, F., Wilson, B. C., Kam, W., & Hong, J. S. (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. The Journal of Neuroscience, 31, 1081–1092.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaspar, P., Berger, B., Gay, M., Hamon, M., Cesselin, F., Vighy, A., Javoy-Agid, F., & Agid, Y. (1983). Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon: Immunocytochemical localization and relationships. Journal of the Neurological Sciences, 58, 247–267.

    Article  CAS  PubMed  Google Scholar 

  • Gelb, J. D., Oliver, E., & Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Archives of Neurology, 56, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, M., Trautwein, A. X., Zecca, L., Youdim, M. B. H., & Riederer, P. (1995). Mossbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra. Journal of Neurochemistry, 65, 923–926.

    Article  CAS  PubMed  Google Scholar 

  • Gillilan, L. A. (1943). The nuclear pattern of the non-tectal portions of the midbrain and isthmus in Ungulates. The Journal of Comparative Neurology, 78, 289–364.

    Article  Google Scholar 

  • Graham, D. G. (1979). On the origin and significance of neuromelanin. Archives of Pathology & Laboratory Medicine, 103, 359–362.

    CAS  Google Scholar 

  • Greco, G., Panzella, L., Gentile, G., Errico, M. E., Carfagna, C., Napolitano, A., & D’Ischia, M. (2011). A melanin-inspired pro-oxidant system for dopa(mine) polymerization: Mimicking the natural casing process. Chemical Communications, 47, 10308–10310.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, G. M., Ophof, A., Broe, M., Jensen, P. H., Kettle, E., Fedorow, H., Cartwright, M. I., Griffiths, F. M., Shepherd, C. E., & Double, K. L. (2005). α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain, 128, 2654–2664.

    Article  PubMed  Google Scholar 

  • Halliday, G., Fedorow, H., Rickert, C. H., Gerlach, M., Riederer, P., & Double, K. L. (2006). Evidence for specific phases in the development of human neuromelanin. Journal of Neural Transmission, 113, 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Hirosawa, K. (1968). Electron microscopic studies on pigment granules in the substantia nigra and locus coeruleus of the Japanese monkey (Macaca fuscata yakui). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 88, 187–203.

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto, K., Nagatsu, I., Ito, S., King, R. A., Nishimura, A., & Nagatsu, T. (1998). Does tyrosinase exist in neuromelanin-pigmented neurons in the human substantia nigra? Neuroscience Letters, 253, 198–200.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. (2003). A chemist’s view of melanogenesis. Pigment Cell Research, 16, 230–236.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. (2006). Encapsulation of a reactive core in neuromelanin. Proceedings of the National Academy of Sciences USA, 103, 14647–14648.

    Article  CAS  Google Scholar 

  • Ito, S., Kato, T., & Fujita, K. (1988). Covalent binding of catechols to proteins through the sulphydryl group. Biochemical Pharmacology, 37, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S., & Wakamatsu, K. (2003). Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative study. Pigment Cell Research, 16, 523–531.

    Article  PubMed  Google Scholar 

  • Ito, S., & Wakamatsu, K. (2006). Chemistry of melanins. In J. J. Nordlund, R. E. Boissy, V. J. Hearing, R. A. King, W. S. Oetting, & J. P. Ortonne (Eds.), The pigmentary system: Physiology and pathophysiology (pp. 282–310). New York: Blackwell.

    Chapter  Google Scholar 

  • Kin, N. M. K., Palo, J., Haltia, M., & Wolfe, L. S. (1983). High levels of brain dolichols in neuronal ceroid-lipofuscinosis and senescence. Journal of Neurochemistry, 40, 1465–1473.

    Article  CAS  Google Scholar 

  • Korner, A., & Pawelek, J. (1982). Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science, 217, 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  • Land, E. J., Ito, S., Wakamatsu, K., & Riley, P. A. (2003). Rate constants for the first two chemical steps of eumelanogenesis. Pigment Cell Research, 16, 487–493.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, N. G., Larsson, B. S., & Lyden-Sokolowski, A. (1988). Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: Accumulation in neuromelanin. Neuroscience Letters, 93, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Simon, J. D. (2003). Isolation and biophysical studies of natural eumelanins: Applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Research, 16, 606–618.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Hong, L., Kempf, V. R., Wakamatsu, K., Ito, S., & Simon, J. D. (2004). Ion-exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell Research, 17, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Mann, D. M., & Yates, P. O. (1983). Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mechanisms of Ageing and Development, 21, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Mann, D. M., Yates, P. O., & Barton, C. M. (1977). Neuromelanin and RNA in cells of substantia nigra. Journal of Neuropathology and Experimental Neurology, 36, 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Mårs, U., & Larsson, B. S. (1999). Pheomelanin is a binding site for drugs and chemicals. Pigment Cell Research, 12, 266–272.

    Article  PubMed  Google Scholar 

  • Marsden, C. D. (1961). Pigmentation in the nucleus substantiae nigrae of mammals. Journal of Anatomy, 95, 256–261.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunaga, J., Sinha, D., Pannell, L., Santis, C., Solano, F., Wistow, G. J., & Hearing, V. J. (1999). Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines. The Journal of Biological Chemistry, 274, 3268–3271.

    Article  CAS  PubMed  Google Scholar 

  • Moos, T. (2000). Absence of ferritin protein in substantia nigra pars compacta neurons. A reappraisal to the role of iron in Parkinson’s disease pathogenesis. Movement Disorders, 15(Suppl 3), 319A.

    Google Scholar 

  • Moses, H. L., Ganote, C. E., Beaver, D. L., & Schuffman, S. S. (1966). Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleus. The Anatomical Record, 155, 167–383.

    Article  CAS  PubMed  Google Scholar 

  • Okun, M. R. (1997). The role of peroxidase in neuromelanin synthesis: A review. Physiological Chemistry and Physics and Medical NMR, 29, 15–22.

    CAS  PubMed  Google Scholar 

  • Ostergren, A., Annas, A., Skog, K., Lindquist, N. G., & Brittebo, E. B. (2004). Long-term retention of neurotoxic beta-carbolines in brain neuromelanin. Journal of Neural Transmission, 111, 141–157.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Perez-Pastene, C., Cardenas, S., Iturra, P., Munõz, P., Couve, E., Caviedes, P., & Segura-Aguilar, J. (2010). Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotoxicity Research, 18, 82–92.

    Article  PubMed  Google Scholar 

  • Prota, G. (1992). Melanin and melanogenesis. San Diego: Academic.

    Google Scholar 

  • Pullarkat, R. K., & Reha, H. (1982). Accumulation of dolichols in brains of elderly. The Journal of Biological Chemistry, 257, 5991–5993.

    CAS  PubMed  Google Scholar 

  • Rosengren, E., Linder-Eliasson, E., & Carlsson, A. (1985). Detection of 5-S-cysteinyldopamine in human brain. Journal of Neural Transmission, 63, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, M., Sokoloski, T. D., & Patil, P. N. (1978). Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules. Federation Proceedings, 37, 2403–2407.

    CAS  PubMed  Google Scholar 

  • Samokhvalov, A., Hong, L., Liu, Y., Garguilo, J., Nemanich, R. J., Edwards, G. S., & Simon, J. D. (2005). Oxidation potentials of human eumelanosomes and pheomelanosomes. Photochemistry and Photobiology, 81, 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Scherer, H. J. (1939). Melanin pigmentation of the substantia nigra in primates. The Journal of Comparative Neurology, 71, 91–98.

    Article  CAS  Google Scholar 

  • Shima, T., Sarna, T., Swartz, H. M., Stroppolo, A., Gerbasi, R., & Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: An electron paramagnetic resonance spectroscopy study. Free Radical Biology & Medicine, 23, 110–119.

    Article  CAS  Google Scholar 

  • Simon, J. D., & Peles, D. N. (2010). The red and the black. Accounts of Chemical Research, 43, 1452–1460.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J. D., Peles, D., Wakamatsu, K., & Ito, S. (2009). Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell & Melanoma Research, 22, 563–579.

    Article  CAS  Google Scholar 

  • Spencer, J. P. E., Jenner, P., Daniel, S. E., Lees, A. J., Marsden, D. C., & Halliwell, B. (1998). Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: Possible mechanism of formation involving reactive oxygen species. Journal of Neurochemistry, 71, 2112–2122.

    Article  CAS  PubMed  Google Scholar 

  • Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., Kleinman, M. H., Turro, N., Krantzi, D., Edwardsi, R. H., Greene, L. A., & Zecca, L. (2000). Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proceedings of the National Academy of Sciences USA, 97, 11869–11874.

    Article  CAS  Google Scholar 

  • Thody, A. J., Higgins, E. M., Wakamatsu, K., Ito, S., Burchill, S. A., & Marks, J. M. (1991). Pheomelanin as well as eumelanin is present in human epidermis. The Journal of Investigative Dermatology, 97, 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Tribl, F., Gerlach, M., Marcus, K., Asan, E., Tatschner, T., Arzberger, T., Meyer, H. E., Bringmann, G., & Riederer, P. (2005). “Subcellular proteomics” of neuromelanin granules isolated from the human brain. Molecular & Cellular Proteomics, 4, 945–957.

    Article  CAS  Google Scholar 

  • Tse, D. C. S., McCreery, R. L., & Adams, R. N. (1976). Potential oxidative pathways of brain catecholamines. Journal of Medicinal Chemistry, 19, 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., & Marth, J. (1999). Essentials of glycobiology. Plainview, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Vincensi, M. R., D’Ischia, M., Napolitano, A., Procaccini, E. M., Riccio, G., Monfrecola, G., Santoianni, P., & Prota, G. (1998). Pheomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: A pilot study. Melanoma Research, 8, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu, K., Fujikawa, K., Zucca, F. A., Zecca, L., & Ito, S. (2003). The structure of neuromelanin as studied by chemical degradative methods. Journal of Neurochemistry, 86, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  • Ward, W. C., Guan, Z., Zucca, F. A., Fariello, R. G., Kordestani, R., Zecca, L., Raetz, C. R. H., & Simon, J. D. (2007). Identification and quantification of dolichol and dolichoic acid in neuromelanin from substantia nigra of the human brain. Journal of Lipid Research, 48, 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H., & Przedborski, S. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. The Journal of Neuroscience, 22, 1763–1771.

    CAS  PubMed  Google Scholar 

  • Ye, T., Hong, L., Garguilo, J., Pawlak, A., Edwards, G. S., Nemanich, R. J., Sarna, T., & Simon, J. D. (2006). Photoionization thresholds of melanins obtained from free electron laser-photoelectron emission microscopy, femtosecond transient absorption spectroscopy and electron paramagnetic resonance measurements of oxygen consumption. Photochemistry and Photobiology, 82, 733–737.

    Article  CAS  PubMed  Google Scholar 

  • Young, T. E., & Babbitt, B. W. (1983). Electrochemical study of the oxidation of α-methyldopamine, α-methylnoradrenaline, and dopamine. The Journal of Organic Chemistry, 48, 562–566.

    Article  CAS  Google Scholar 

  • Zareba, M., Bober, A., Korytowski, W., Zecca, L., & Sarna, T. (1995). The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochimica et Biophysica Acta, 1271, 343–348.

    Article  PubMed  Google Scholar 

  • Zecca, L., & Swartz, H. M. (1993). Total and paramagnetic metals in human substantia nigra and its neuromelanin. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 5, 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Costi, P., Mecacci, C., Ito, S., Terreni, M., & Sonnino, S. (2000). Interaction of human substantia nigra neuromelanin with lipids and peptides. Journal of Neurochemistry, 74, 1758–1765.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Tampellini, D., Gerlach, M., Riederer, P., Fariello, R. G., & Sulzer, D. (2001a). Substantia nigra neuromelanin: Structure, synthesis, and molecular behaviour. Molecular Pathology, 54, 414–418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zecca, L., Gallorini, M., Schunemann, V., Trautwein, A. X., Gerlach, M., Riederer, P., Vezzoni, P., & Tampellini, D. (2001b). Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: Consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 76, 1766–1773.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002a). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Tampellini, D., Gatti, A., Crippa, R., Eisner, M., Sulzer, D., Ito, S., Fariello, R., & Gallorini, M. (2002b). The neuromelanin of human substantia nigra and its interaction with metals. Journal of Neural Transmission, 109, 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., Giaveri, G., Arosio, P., Santambrogio, P., Fariello, R. G., Karatekin, E., Kleinman, M. H., Turro, N. J., Hornykiewicz, O., & Zucca, F. A. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences USA, 101, 9843–9848.

    Article  CAS  Google Scholar 

  • Zecca, L., Bellei, C., Costi, P., Albertini, A., Monzani, E., Casella, L., Gallorini, M., Bergamaschi, L., Moscatelli, A., Turro, N. J., Eisner, M., Crippa, P. R., Ito, S., Wakamatsu, K., Bush, W. D., Ward, W. C., Simon, J. D., & Zucca, F. A. (2008). New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proceedings of the National Academy of Sciences USA, 105, 17567–17572.

    Article  CAS  Google Scholar 

  • Zhang, F., & Dryhurst, G. (1994). Effects of L-cysteine on the oxidation chemistry of dopamine: New reaction pathways of potential relevance to idiopathic Parkinson’s disease. Journal of Medicinal Chemistry, 37, 1084–1098.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Phillips, K., Wielgus, A. R., Liu, J., Albertini, A., Zucca, F. A., Faust, R., Qian, S. Y., Miller, D. S., Chingell, C. F., Wilson, B., Jackson-Lewis, V., Przedborski, S., Joset, D., Loike, J., Hong, J. S., Sulzer, D., & Zecca, L. (2011). Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: Implications for progression of Parkinson’s disease. Neurotoxicity Research, 19, 63–72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou, G. P., & Troy, F. A. (2004). NMR Study of the preferred membrane orientation of polyisoprenols (Dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 15, 347–359.

    Article  PubMed  Google Scholar 

  • Zucca, F. A., Giaveri, G., Gallorini, M., Albertini, A., Toscani, M., Pezzoli, G., Lucius, R., Willms, H., Sulzer, D., Ito, S., Wakamatsu, K., & Zecca, L. (2004). The neuromelanin of human substantia nigra: Physiological and pathogenic aspects. Pigment Cell Research, 17, 610–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the HWP-Program “Chancengleichheit für Frauen in Forschung und Lehre,” TU München and the Foundation Blanceflor Boncompagni-Ludovisi, neÕ Bildt. N. Vona is gratefully acknowledged for assistance preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Greco, G. (2014). Neuromelanin and Parkinson’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_12

Download citation

Publish with us

Policies and ethics