Skip to main content
Log in

The impact of including tRNA content on the optimality of the genetic code

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Statistical and biochemical studies have revealed nonrandom patterns in codon assignments. The canonical genetic code is known to be highly efficient in minimizing the effects of mistranslational errors and point mutations, since it is known that, when an amino acid is converted to another due to error, the biochemical properties of the resulted amino acid are usually very similar to those of the original one. In this study, we have taken into consideration both relative frequencies of amino acids and relative gene copy frequencies of tRNAs in genomic sequences in order to introduce a fitness function which models the mistranslational probabilities more accurately in modern organisms. The relative gene copy frequencies of tRNAs are used as estimates of the tRNA content. We also altered the rule previously used for the calculation of the probabilities of single base mutation occurrences. Our model signifies higher optimality of the genetic code towards load minimization and suggests the presence of a coevolution of tRNA frequency and the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amirnovin, R., 1997. An analysis of the metabolic theory of the origin of the genetic code. J. Mol. Evol. 44, 473–476.

    Article  Google Scholar 

  • Archetti, M., 2004. Codon usage bias and mutation constraints reduce the level of error minimization of the genetic code. J. Mol. Evol. 59(2), 258–266.

    Article  Google Scholar 

  • Ardell, D.H., 1998. On error-minimization in a sequential origin of the standard genetic code. J. Mol. Evol. 47, 1–13.

    Article  Google Scholar 

  • Ardell, D.H., Sella, G., 2001. On the evolution of redundancy in genetic codes. J. Mol. Evol. 53, 269–281.

    Article  Google Scholar 

  • Benner, S.A., Cohen, M.A., Gonnet, G.H., 1994. Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng. 7, 1323–1332.

    Google Scholar 

  • Chechetkin, V.R., 2003. Block structure and stability of the genetic code. J. Theor. Biol. 222, 177–188.

    Article  MathSciNet  Google Scholar 

  • Crick, F.H., 1968. The origin of genetic code. J. Mol. Biol. 38, 367–379.

    Article  Google Scholar 

  • DiGiulio, M., 2000. The origin of the genetic code. Trends Biochem. Sci. 25, 44–47.

    Article  Google Scholar 

  • DiGiulio, M., 2001. The origin of the genetic code cannot be studied using measurements based on the PAM matrix because this matrix reflects the code itself, making any such analyses tautologous. J. Theor. Biol. 208, 141–144.

    Article  Google Scholar 

  • Dillon, L.S., 1973. The origins of the genetic code. Bot. Rev. 39, 301–345.

    Google Scholar 

  • Dong, H., Nilsson, L., Kurland, C.G., 1996. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663.

    Article  Google Scholar 

  • Fink, T.R., Crothers, D.M., 1972. Free energy of imperfect nucleic acid helices. J. Mol. Biol. 66, 1–12.

    Article  Google Scholar 

  • Freeland, S.J., 2002. The genetic code: an adaptation for adapting? J. Genet. Program. Evol. Mach. 3(2), 113–127.

    Article  MATH  Google Scholar 

  • Freeland, S.J., Hurst, L.D., 1998a. Load minimization of the genetic code: history does not explain the pattern. Proc. R. Soc. Lond. B 266, 2111–2119.

    Article  Google Scholar 

  • Freeland, S.J., Hurst, L.D., 1998b. The genetic code is one in a million. J. Mol. Evol. 47, 238–248.

    Article  Google Scholar 

  • Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D., 2000. Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518.

    Google Scholar 

  • Gilis, D., Massar, S., Cerf, N.J., Rooman, M., 2001. Optimality of the genetic code with respect to protein stability and amino acid frequencies. Genome Biol. 2(11), 49.1–49.12.

    Article  Google Scholar 

  • Goldberg, A.L., Wittes, R.E., 1966. Genetic code: aspects of organization. Science 153, 420–424.

    Google Scholar 

  • Goodarzi, H., Nejad, H.A., Torabi, N., 2004. On the optimality of the genetic code with the consideration of termination codons. Biosystems 77(1–3), 163–173.

    Article  Google Scholar 

  • Goodarzi, H., Najafabadi, H.S., Hassani, K., Nejad, A.H., 2005. On the optimality of the genetic code, with the consideration of coevolution theory by comparison of prominent cost measure matrices. J. Theor. Biol. 235(3), 318–325.

    Article  MathSciNet  Google Scholar 

  • Haig, D., Hurst, L.D., 1991. A quantitative measure of error minimization on the genetic code. J. Mol. Evol. 33, 412–417.

    Article  Google Scholar 

  • He, L., Kierzek, R., SantaLucia, J., Walter, A.E., Turner, D.H., 1991. Nearest-neighbor parameters for G.U mismatches. Biochemistry 30, 11124–11132.

    Google Scholar 

  • Ikemura, T., 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. Nucleic Acids Res. 28, 3517–3523.

    Google Scholar 

  • Judson, O.P., Haydon, D., 1999. The genetic code: what is it good for? J. Mol. Evol. 49, 539–550.

    Article  Google Scholar 

  • Kanaya, S., Yamada, Y., Kudo, Y., Ikemura, T., 1999. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238, 143–155.

    Article  Google Scholar 

  • King, J.L., Jukes, T.H., 1969. Non-Darwinian evolution. Science 164, 788–798.

    Google Scholar 

  • Knight, R.D., Freeland, S.J., Landweber, L.F., 2001. Rewiring the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2, 49–58.

    Article  Google Scholar 

  • Luo, L., Li, X., 2002. Coding rules for amino acids in the genetic code: the genetic code is a minimal code of mutational deterioration. Orig. Life 32, 23–33.

    Article  Google Scholar 

  • Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940.

    Article  Google Scholar 

  • Pele, S.R., 1965. Correlation between coding-triplets and amino acids. Nature 207, 597–599.

    Google Scholar 

  • Percudani, R., Pavesi, A., Ottonello, S., 1997. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J. Mol. Biol. 268, 322–330.

    Article  Google Scholar 

  • Ronneberg, T.A., Landweber, L.F., Freeland, S.J., 2000. Testing a biosynthetic theory of the genetic code: fact or artifact? Proc. Natl. Acad. Sci. USA 97, 13690–13695.

    Google Scholar 

  • Woese, C.R., 1965a. On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 54, 1546–1552.

    Article  Google Scholar 

  • Woese, C.R., 1965b. Order in the genetic code. Proc. Natl. Acad. Sci. USA 54, 71–75.

    Article  Google Scholar 

  • Woese, C.R., Dagre, D.H., Dagre, S.A., Kondo, M., Saxinger, W.C., 1966a. On the fundamental nature and evolution of genetic code. Cold Spring Harb. Symp. Quant. Biol. 31, 723–736.

    Google Scholar 

  • Woese, C.R., Dugne, D.H., Saxinger, W.C., Dayre, S.A., 1966b. The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA 55, 966–974.

    Article  Google Scholar 

  • Wong, J.T., 1975. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72, 1909–1912.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Goodarzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodarzi, H., Najafabadi, H.S., Nejad, H.A. et al. The impact of including tRNA content on the optimality of the genetic code. Bull. Math. Biol. 67, 1355–1368 (2005). https://doi.org/10.1016/j.bulm.2005.03.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2005.03.002

Keywords

Navigation