Skip to main content
Log in

Cypermethrin toxicity to rice field cyanobacterium Calothrix sp.

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Cyanobacteria are one of the potent group of microbes in wet land soils, especially in rice fields. Most of them have the capacity to fix atmospheric nitrogen and thus play a crucial role in nitrogen budget of soil where they grow. With the advent of green revolution these microbes have been gradually exposed to pesticides in large scale that poses a great threat to them. The present study was undertaken to investigate the influence of cypermethrin, a pyrethroid insecticide, on the growth and physiological activities of a rice field nitrogen fixing cyanobacterium Calothrix sp. (strain GUEco 1003) under controlled laboratory conditions. The test cyanobacterium showed varying degree of sensitivity against cypermethtin. To evaluate the toxicity, the organism was exposed to varying concentrations of the insecticide (8.75–70 ppm) based on LC50 for a period of 20 days. Results revealed that cypermethrin negatively affected its growth (65%), biomass (67%), chlorophyll-a (68%), protein (53%) and nitrogen content (65%) in a time-dose dependent manner. However the organism showed increase carbohydrate content with the increasing concentration of the insecticide over the control. Reduction in growth, biomass, chlorophyll-a, protein and nitrogen content with the increasing concentration of cypermethrin was an indication of its toxicity to the Calothrix sp., which is one of the natural biofertilizer in any agricultural field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikary SP (1983) Growth measurements by monitoring light scattering of a filamentous blue green alga which does not give uniform and stable suspension in culture vessels. Zeitschrifts fur Allg Mikrobiologie 23:475–483

    Article  Google Scholar 

  • Adhikary SP (1989) Effect of pesticides on growth, photosynthetic oxygen evolution and nitrogen fixation of Westiellopsis prolifica. J Gen App Microbiol 35:319–325

    Article  CAS  Google Scholar 

  • Averamova S, Rossler M (1975) Effect of various temperatures on some physiological–biochemical induces during the light phase of the life cycle of Scenedesmus sp. Appl Microbiol 5:115–120

    Google Scholar 

  • Bhosle NP, Nasreen S (2013) Remediation of cypermethrin- 25EC by microorganisms. Eur J Exp Biol 3(1):144–152

    CAS  Google Scholar 

  • Chen T, Huang X, Guo et al (2013) Butachlor induced some physiological and biochemical changes in a rice field biofertilizer cyanobacterium. Pestic Biochem Phys 105:24–30

    Article  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi, p 686

    Google Scholar 

  • Dowidar SMA, Osman MEH, Naggar AHEI, Khalefa AE (2010) Effect of butachlor and thiobencarb herbicides on protein content and profile and some enzyme activities of Nostoc muscorum. J Genet Eng Biotechnol 8:89–95

    Google Scholar 

  • Gafur MA, Parvin S (2008) Distribution of Blue green algae in soils of Chittagong University Campus and their nitrogen fixing capacity. Bangladesh J Bot 37(1):49–53

    Article  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J, Fernandez-Valiente E (2009) Differential effect of bentazon and molinate on Anabaena cylindrica, an autochthonous cyanobacterium of Portuguese rice field agro ecosystem. Water Air Soil Pollut 197(1–4):2112–222

    Google Scholar 

  • Guillard RL (1973) Division rates. In: Stein JR (ed) Handbook of physiological methods, culture methods and growth measurement. Cambridge University Press, New York, pp 290–331

    Google Scholar 

  • Gupta K, Baruah PP (2015) Effect of lambdacyhalothrin on Calothrix sp. (GUEco 1001), an authchthonous cyanobacterium of rice fields of Brahmaputra floodplain. Environ Sci Pollut Res 22:18554–18560

    Article  CAS  Google Scholar 

  • Gupta K. Baruah PP (2017) Isolation, identification and characterization of rice field Calothrix spp. of Assam. J Algal Biomass Utln 8(4):77–81

    Google Scholar 

  • Habib K, Manikar N, Ansari S, Fatma T (2013) Carbaryl stress induced cellular changes in Calothrix brevissima. Environ Sci Pollut Res 20:862–871

    Article  CAS  Google Scholar 

  • Hashtroudi MS, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2013) Endogenous auxins in plant growth-promoting Cyanobacteria: Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386

    Article  CAS  Google Scholar 

  • Huang TC, Chow TJ (1992) Characterzation of the Calothrix isolates from rice fields. Bot Bull Acad Sin 33:23–31

    Google Scholar 

  • Kiran G, Sharma SG, Singh SP (2006) Effects of monocrotophos and butachlor on N-fixing cyanobacteria and associated biochemical activities. Ann Plant Protect Sci 14(1):210–214

    Google Scholar 

  • Komarek J, Anagnostidis K (1989) Modern approach to the classification system of Cyanophytes 4- Nostocales. Algol Stud 56:247–345

    Google Scholar 

  • Kumar S, Habib K, Fatma T (2008) Endosulfan induced biochemical changes in nitrogen fixing cyanobacteria. Sci Total Environ 403(1–3):130 –130 38

    Article  CAS  PubMed  Google Scholar 

  • Kumar JIN, Kumar RN, Bora A, Kaur AM (2011) An evaluation of pesticides stress induces proteins in three cyanobacterial species: Anabaena fertilissima, Aulosira fertilissima, Westiellopsis prolifica using SDS–PAGE. Adv Environ Biol 5(4):739–745

    Google Scholar 

  • Kumar J, Singh R, Parihar P, Singh VP, Prasad SM (2016) UV-B induces biomass production and nonenzymatic antioxidant compounds in three cyanobacteria. J Appl Phycol 28:131–140

    Article  CAS  Google Scholar 

  • Lal S, Saxena DM (1980) Cytological and biochemical effect of pesticides on microorganisms. Residue Rev 73:49–86 

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AI, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–276

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorbtion of light by chlorophyll solution. J Biol Chem 140:315–322

    Article  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Influence of cypermethrin and fenvalerate on a green alga and three cyanobacteria isolated from soil. Ecotoxicol Environ Saf 14(2):142–146

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra PK, Patra S, Samantaray PK, Mohanty RC (2003) Effect of the pyrethroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Pollut J Environ Stud 12(2):207–212

    CAS  Google Scholar 

  • Okmen G, Ugur A (2011) Influence of bispyribac sodium on nitrogenase activity and growth of cyanobacteria isolated from paddy fields. Afr J Microbiol Res 5(18):2760–2764

    Article  CAS  Google Scholar 

  • Padhy RN (1985) Cyanobacteria and pesticides. Residue Rev 95:1–44

    CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethic 8:17–29

    Article  Google Scholar 

  • Prasad SM, Sheeba SVP, Srivastava PK (2011) Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicol Environ Saf 74:1981–1993

    Article  CAS  Google Scholar 

  • Rajendran UM, Kathirvel E, Narayanaswamy A (2007) Effects of a fungicide, an insecticide and a biopesticide on Tolypothrix sctynemoides. Pestic Biocheme Physiol 87:164–171

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue green algae and rice. IRRI Los Banos, Philippines, p 112

    Google Scholar 

  • Sahu D, Bastia AK, Rath B (2015) Toxicity of organophosphorus pesticides on rice field cyanobacteria. Int J Geol 3(6):6–10

    Google Scholar 

  • Shen JY, Jiang J, Zheng P (2009) Effect of light and monosulfuron on growth and photosynthetic pigments of Anabaena flos aquae Breb. J Water Resour Prot 1:408–413

    Article  CAS  Google Scholar 

  • Shinde GS, Pingle D, Gunale VR (2010) Interaction of Calothrix javanica de Wilde with furadan, a carbomate pesticide. Asian J Exp Biol Sci Spl 1(1):129–131

    CAS  Google Scholar 

  • Singh DP, Khattar JIS, Gupta M, Kaur G (2014) Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. Pestic Biochem Phys 110:63–70

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Alka GK, Singh Y (2016) Toxicological effect of pretilachlor on some physiological processes of cyanobacterium Synechocystis sp. strain PUPCCC 64. J Appl Biol Biotech 4(01):012–019

    Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods enzymol 8:3–26

    Article  CAS  Google Scholar 

  • Srinivasulu M, Rangaswamy V (2013) Influence of insecticides alone and in combination with fungicides on enzyme activities in soil. Int J Environ Sci Technol 10:341–350 

    Article  CAS  Google Scholar 

  • Stewart WDP, Rowell P, Kerby NW, Reed RH, Machray GC (1987) A century of nitrogen fixation. Phil Trans R Soc Lond 317:245–258

    Google Scholar 

  • Tiwari SP, Sharma NK, Tripathi K, Rai AK (2011) Sustainability and Cyanobacteria (blue green algae): facts and challenges. J Appl Phycol 23:1059–1081 

    Article  CAS  Google Scholar 

  • Xia J (2005) Response of Growth, photosynthesis and photoinhibition of the edible cyanobacterium Nostoc sphaeriodes colonies to thiobencarb herbicides. Chemosphere 59:561–566

    Article  CAS  PubMed  Google Scholar 

  • Yadav NR, Sharma S (2013) Toxic effect of organophosphate, pyrethroids and organochlorine pesticides on Spirulina platensis growth rate. Int J Sci Res 2(6):286–287

    Google Scholar 

  • Yoshida S, Forno DA, Cock DH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. The international Rice Research Institute, Los Banos, p 83

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Head, Department of Botany, Gauhati University, Guwahati, (India) for providing necessary laboratory facilities to carry out the study. We thank Dr. Hemen Deka, Department of Botany, Gauhati University for his help in undertaking some statistical work.

Funding

There is no such funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Baruah, P.P. Cypermethrin toxicity to rice field cyanobacterium Calothrix sp.. Vegetos 33, 401–408 (2020). https://doi.org/10.1007/s42535-020-00114-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-020-00114-9

Keywords

Navigation