Skip to main content

Advertisement

Log in

Zinc and phosphate solubilizing Rhizobium radiobacter (LB2) for enhancing quality and yield of loose leaf lettuce in saline soil

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

In the present study, rhizobial isolate LB2 was procured from the root nodules of Leucaena leucocephala wildly growing in saline soil. On the basis of morphology, biochemical analysis and nucleotide sequence homology LB2 was identified as Agrobacterium tumefaciens syn. Rhizobium radiobacter (Accession no. KY392996). Rhizobium radiobacter LB2 showed various plant growth promoting (PGP) activities such as mineral (zinc and phosphate) solubilisation, nitrogen fixation, production of indole acetic acid (IAA), exopolysaccharides (EPS) and siderophore. LB2 also showed salt tolerance activity up to 4% NaCl concentration. In this study, four types of fertilizers, including chemical (NPK), vermicompost (VC), farmyard manure (FYM) and bacterial inoculant (R. radiobacter LB2) were applied on lettuce crop to check their impact on growth, nutritional content and yield in the field conditions. Among all the treatments, bacterial inoculant R. radiobacter was observed as best for lettuce cultivation. Rhizobium radiobacter (LB2) caused highest increment in all the plant growth parameters with improved nutritional content in comparison to control and other treatments. Rhizobium radiobacter treatment was found to be effective even in saline soil. Rhizobium radiobacter (LB2) can thus be used for the enhanced lettuce cultivation along with combating soil salinity in sustainable manner without the input of harmful chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arora NK, Verma M (2017) Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7(6):381

    Article  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677

    Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sust 1(4):309–340

    Google Scholar 

  • Atajan FA, Zohan MHS (2020) Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria. J Hortic Postharvest Res 3:67–78

    Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  Google Scholar 

  • Bellabarba A, Fagorzi C, diCenzo GC, Pini F, Viti C, Checcucci A (2019) Deciphering the symbiotic plant microbiome: translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9(9):529

    Article  CAS  Google Scholar 

  • Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia terapotensis. J Nat Prod 64:892–895

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–86

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas PM (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants and water. University of California, Berkeley

    Google Scholar 

  • Cipriano MAP, Lupatini M, Lopes-Santos L, da Silva MJ, Roesch LFW, Destefano SAL, Freitas SS, Kuramae EE (2016) Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiol Ecol 92(12):1–13

    Article  CAS  Google Scholar 

  • Da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreir FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182

    Article  CAS  Google Scholar 

  • De Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Evol Microbiol 48(2):369–382

    Google Scholar 

  • Dekak A, Chabi R, Menasria T, Benhizia Y (2018) Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. J Adv Res 14:35–42

    Article  CAS  Google Scholar 

  • Dong R, Zhang J, Huan H, Bai C, Chen Z, Liu G (2017) High salt tolerance of a Bradyrhizobium strain and its promotion of the growth of Stylosanthes guianensis. Int J Mol Sci 18(8):1625

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  Google Scholar 

  • Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    Article  CAS  Google Scholar 

  • FAOSTAT (2018) Countries by commodity. http://www.fao.org/faostat/en/#rankings/countries_by_commodity

  • Garrity GM, Bell JA, Lilburn TG (2005) Bergey’s manual of systematic bacteriology. Springer, New York, p 324

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York, p 680

    Google Scholar 

  • Gordon AS, Weber RW (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195

    Article  CAS  Google Scholar 

  • Grant A (2018) Different lettuce types: varieties of lettuce for the garden. https://www.gardeningknowhow.com/edible/vegetables/lettuce/different-lettuce-types.htm

  • Habib N, Ashraf M (2014) Effect of exogenously applied nitric oxide on water relations and ionic composition of rice (Oryza sativa L.) plants under salt stress. Pak J Bot 46:111–116

    Google Scholar 

  • Hardy RWF, Holstern RD, Jacksoen EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  Google Scholar 

  • Hoque MM, Ajwa H, Othman M (2010) Yield and postharvest quality of lettuce in response to nitrogen, phosphorus and potassium fertilizers. Hortic Sci 45(10):1539–1544

    Google Scholar 

  • Horticultural College and Research Institute (2013) Crop production techniques of horticultural crops. http://agritech.tnau.ac.in/pdf/2013/cpg_horti_2013.pdf

  • Hussain A, Zahir ZA, Ditta A, Tahir MU, Ahmad M, Mumtaz MZ, Hayat K, Hussain S (2020) Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy 10:39

    Article  CAS  Google Scholar 

  • Hussein KA, Joo JH (2018) Plant growth-promoting rhizobacteria improved salinity tolerance of Lactuca sativa and Raphanus sativus. J Microbiol Biotechnol 28(6):938–945

    Article  CAS  Google Scholar 

  • Iqbal U, Jamil N, Ali I, Hasnain S (2010) Effect of zinc–phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Ann Microbiol 60:243–248

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall Inc, Englewood Cliffs, pp 38–388

    Google Scholar 

  • Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M (2015) Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol 85:94–113

    Article  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate-solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77

    Google Scholar 

  • Johnstone PR, Hartz TK, Cahn MD, Johnstone MR (2005) Lettuce response to phosphorus fertilization in high phosphorus soils. Hortic Sci 40(5):1499–1503

    Google Scholar 

  • Kadmiri IM, Chaouqui L, Azaroual SE, Sijilmassi B, Yaakoubi K, Wahby I (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415

    Article  CAS  Google Scholar 

  • Kallala N, M’sehli W, Jelali K, Kais Z, Mhadhbi H (2018) Inoculation with efficient nitrogen fixing and indoleacetic acid producing bacterial microsymbiont enhance tolerance of the model legume Medicago truncatula to iron deficiency. Biomed Res Int 2018:9134716

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54(4):427–433

    Article  CAS  Google Scholar 

  • Karoney EM, Ochieno DMW, Baraza DL, Muge EK, Nyaboga EN, Naluyange V (2020) Rhizobium improves nutritive suitability and tolerance of Phaseolus vulgaris to Colletotrichum lindemuthianum by boosting organic nitrogen content. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103534

    Article  Google Scholar 

  • Ku YS, Rehman HM, Lam HM (2019) Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy 9(11):764

    Article  CAS  Google Scholar 

  • Kurokura T, Hiraide S, Shimamura Y, Yamane K (2017) PGPR improves yield of strawberry species under less-fertilized conditions. Environ Control Biol 55(3):121–128

    Article  Google Scholar 

  • Lopez-Lopez A, Rogel-Hernandez MA, Barois I, Ortiz-Ceballos AL, Martinez J, Ormeno-Orrillo E, Martinez-Romero E (2012) Rhizobium grahamii sp. nov. from nodules of Dalea termatea, Leucocephala and Clitoria termatea and Rhizobium mesoamericanum sp. nov. from nodules of Phaseolus vulgaris, Siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271

    Article  CAS  Google Scholar 

  • Marulanda-Aguirre A, Azcon R, Ruiz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18

    Article  CAS  Google Scholar 

  • Matse DT, Huang C, Huang Y, Yen M (2020) Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J Plant Nutr 43(5):739–752

    Article  CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Mousavi SR, Galavi M, Rezaei M (2013) Zinc (Zn) importance for crop production—a review. Int J Agron Plant Prod 4(1):64–68

    Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    Article  CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    Article  CAS  Google Scholar 

  • Noumedem JAK, Djeussi DE, Hritcu L, Mihasan M, Kuete V (2017) Lactuca sativa. In: Kuete V (ed) Medicinal spices and vegetables from Africa. Academic Press, New York, pp 437–449

    Chapter  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods of growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In: USDA Circular 939. US Government Printing Office, Washington DC

  • Patel D, Saraf M (2013) Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. Eur J Soil Biol 55:47–54

    Article  CAS  Google Scholar 

  • Patil SM, Patil DB, Patil MS, Gaikwad PV, Bhamburdekar SB, Patil PJ (2014) Isolation, characterization and salt tolerance activity of Rhizobium species from root nodules of some legumes. Int J Curr Microbiol Appl Sci 3(5):1005–1008

    CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Quettier DC, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx MC, Cayin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72:35–42

    Article  Google Scholar 

  • Ribeiro RA, Rogel MA, Lopez-Lopez A, Ormeno-Orrillo E, Barcellos FG, Martinez J, Thompson FL, Martinez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184

    Article  Google Scholar 

  • Ribeiro RA, Ormenõ-Orrillo E, Dall’Agnol RF, Graham PH, Martínez-Romero E, Hungria M (2013) Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164:740–748

    Article  CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Braz J Microbiol 35(1–2):121–125

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Shams AS, Abd El-Rahman HM, El-Ramady HR (2013) Evaluation of integrated nutrient management practices for lettuce production under drip irrigation system. J Appl Sci Res 9(3):2223–2231

    CAS  Google Scholar 

  • Shoukry A, Hassan E, El-Ghomary A (2018) Assessment of indole acetic acid production from Rhizobium leguminosarum strains. Curr Sci Int 7(1):60–69

    Google Scholar 

  • Szczech M, Szafirowska A, Kowalczyk W, Szwejda-Grzybowska J, Włodarek A, Maciorowski R (2016) The effect of plant growth promoting bacteria on transplants growth and lettuce yield in organic production. J Hortic Res 24(2):101–107

    Article  CAS  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increase antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedings. Turk J Agric For 34:349–359

    CAS  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68(1–3):99–108

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sustain 1:49–59

    Article  Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910

    Google Scholar 

  • Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK (2020) Sphingobacterium sp. BHU-AV3 induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00443

    Article  Google Scholar 

  • Vargar LK, Volpiano CG, Lisboa BB, Giongo A, Beneduzi A, Passaglia LMP (2017) Potential of rhizobia as plant growth promoting rhizobacteria. In: Zaidi A, Khan MS, Mussarat J (eds) Microbes for legume improvement. Springer, Cham, pp 153–174

    Chapter  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti R, Arora NK, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford, p 164

    Google Scholar 

  • Wang ET, Tan ZY, Willems A, Fernandez-Lopez M, Reinhold-Hurek B, Martinez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693

    CAS  Google Scholar 

  • Worldatlas (2017) World leaders in lettuce production. https://www.worldatlas.com/articles/world-leaders-in-lettuce-production.html

  • Xu KW, Penttinen P, Chen YX, Chen Q, Zhang X (2013) Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid–hot river valley area in Panxi, Sichuan, China. Appl Microbiol Biotechnol 97:783–793

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  Google Scholar 

  • Zakria M, Udonishi K, Ogawa T, Yamamoto A, Saeki Y, Akao S (2008) Influence of inoculation technique on the endophytic colonization of rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane. Soil Sci Plant Nutr 54:224–236

    Article  Google Scholar 

  • Zapata-Vahos IC, Rojas-Rodas F, David D, Gutierrez-Monsalve JA, Castro-Restrepo D (2020) Comparison of antioxidant contents of green and red leaf lettuce cultivated in hydroponic systems in greenhouses and conventional soil cultivation. Rev Fac Nac Agron Med 73(1):9077

    Article  Google Scholar 

  • Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2010) Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J Plant Physiol 167:1239–1247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest involved.

Ethical statement

The study does not involve any work on humans or animals hence does not require any ethical clearance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

42398_2020_110_MOESM2_ESM.jpg

Supplementary material 2 Results of plant growth promoting characters of isolate R. radiobacter LB2: a) Zinc solubilisation; b) Phosphate solubilisation; c) EPS production; d) IAA production; e) Nitrogen fixation on nitrogen free media; f) Siderophore production through modified microplate method (JPEG 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Singh, A., Dwivedi, D.H. et al. Zinc and phosphate solubilizing Rhizobium radiobacter (LB2) for enhancing quality and yield of loose leaf lettuce in saline soil. Environmental Sustainability 3, 209–218 (2020). https://doi.org/10.1007/s42398-020-00110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00110-4

Keywords

Navigation