Skip to main content

Advertisement

Log in

Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, a compact 16-channel integrated charge-sensitive preamplifier named the smart preamplifier (SPA) was developed to support the large-scale detector array used in modern nuclear physics experiments. Two types of SPA, namely SPA02 and SPA03 (with external field effect transistor), have been manufactured to match silicon detectors with small and large capacitances, respectively. The characteristics of the SPA include fast response of typically less than 6 ns for pulse rising time and low equivalent noise of 1.5 keV at zero input capacitance. The energy sensitivity and pulse decay time can be easily adjusted by changing the feedback capacitance \(C_\mathrm{f}\) and resistance \(R_\mathrm{f}\) in various applications. A good energy resolution of 24.4 keV for 5.803-MeV alpha particles from \(^{244}\)Cm was achieved using a small-sized Si-PIN detector; for the silicon strip detectors in the test with the alpha source, a typical energy resolution of 0.6–0.8% was achieved. The integrated SPA has been employed in several experiments of silicon strip detectors with hundreds of channels, and a good performance has been realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Tanihata, Nuclear structure studies from reaction induced by radioactive nuclear beams. Prog. Part. Nucl. Phys. 35, 505 (1995). https://doi.org/10.1016/0146-6410(95)00046-L

    Article  Google Scholar 

  2. I. Tanihata, Studies with radioactive beams, past and future. Prog. Theor. Phys. Supp. 146, 1 (2002). https://doi.org/10.1143/PTPS.146.1

    Article  Google Scholar 

  3. T. Motobayashi, Y. Ikeda, K. Ieki et al., Large deformation of the very neutron-rich nucleus \(^{32}\)Mg from intermediate-energy Coulomb excitation. Phys. Lett. B 346, 9 (1995). https://doi.org/10.1016/0370-2693(95)00012-A

    Article  Google Scholar 

  4. Y. Blumenfeld, F. Auger, J.E. Sauvestre et al., MUST: a silicon strip detector array for radioactive beam experiments. Nucl. Instrum. Methods A 421, 471 (1999). https://doi.org/10.1016/S0168-9002(98)01178-4

    Article  Google Scholar 

  5. E. Pollacco, D. Beaumel, P. Roussel-Chomaz et al., MUST2: A new generation array for direct reaction studies. Eur. Phys. J. A 25, 287 (2005). https://doi.org/10.1140/epjad/i2005-06-162-5

    Article  Google Scholar 

  6. G. Marquínez-Durán, L. Acosta, R. Berjillos et al., GLORIA: a compact detector system for studying heavy ion reactions using radioactive beams. Nucl. Instrum. Methods A 755, 69 (2014). https://doi.org/10.1016/j.nima.2014.04.002

    Article  Google Scholar 

  7. M. Labiche, W.N. Catford, R.C. Lemmon et al., TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods A 614, 439 (2010). https://doi.org/10.1016/j.nima.2010.01.009

    Article  Google Scholar 

  8. M. Romoli, M. Di Pietro, E. Vardaci et al., EXODET: a new approach to detection systems for RIB nuclear physics based on ASIC chips developed for high-energy experiments. IEEE Trans. Nucl. Sci. 52, 1860 (2005). https://doi.org/10.1109/TNS.2005.856890

    Article  Google Scholar 

  9. M. Romoli, E. Vardaci, A. Anastasio et al., EXPADES: a new detection system for charged particles in experiments with RIBs. Nucl. Instrum. Methods B 266, 4637 (2008). https://doi.org/10.1016/j.nimb.2008.05.121

    Article  Google Scholar 

  10. N.R. Ma, L. Yang, C.J. Lin et al., MITA: a multilayer ionization-chamber telescope array for low-energy reactions with exotic nuclei. Eur. Phys. J. A 55, 87 (2019). https://doi.org/10.1140/epja/i2019-12765-7

    Article  Google Scholar 

  11. 142A/B/C Preamplifiers. https://www.ortec-online.com/products/electronics/preamplifiers/142a-b-c

  12. Mesytec MPR-16-Series. http://www.mesytec.com/products/datasheets/MPR-16.pdf

  13. Integrated Circuits Products of IDEAS. https://ideas.no/ideas-ic-products/

  14. S. Wang, W. Chen, J.H. Guo, Design and testing of a miniature silicon strip detector. Nucl. Sci. Tech. 31, 7 (2020). https://doi.org/10.1007/s41365-019-0714-z

    Article  Google Scholar 

  15. J.J. Wei, A prototype silicon strip detector for space astronomy. Nucl. Tech. 41, 120402 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.120402. (in Chinese)

    Article  Google Scholar 

  16. OPA657 1.6 GHz, Low Noise, FET-Input Operational Amplifier. http://www.ti.com/product/OPA657?keyMatch=OPA657&tisearch=Search-EN

  17. Micron Semiconductor Ltd. http://www.micronsemiconductor.co.uk/

  18. BF862 Datasheet. www.alldatasheet.com/datasheet-pdf/pdf/16238/PHILIPS/BF862.html

  19. E. English, A. Weltz, R. Dahal et al., Low-noise preamplifier design considerations for large area high capacitance solid-state neutron detectors. IEEE Trans. Nucl Sci. 63, 304 (2016). https://doi.org/10.1109/TNS.2016.2516008

    Article  Google Scholar 

  20. AD8001 Datasheet. https://www.analog.com/en/products/ad8001.html#product-overview

  21. AFG3000C Arbitrary/Function Generator Datasheet. https://www.tek.com/datasheet/afg3000c-arbitrary-function-generator-datasheet

  22. N1568A 16Ch Programmable Spectroscopy Amplifier and Dual 16Ch CFD (30% and 80%). https://www.caen.it/products/n1568a/

  23. V785 32 Channel Multievent Peak Sensing ADC. https://www.caen.it/products/v785/

  24. MSO/DPO4000B Mixed Signal Oscilloscope. https://www.tek.com/oscilloscope/mso4000-dpo4000

  25. X.X. Xu, F.C.E. Teh, C.J. Lin et al., Characterization of CIAE developed double-sided silicon strip detector for charged particles. Nucl. Sci. Tech. 29, 73 (2018). https://doi.org/10.1007/s41365-018-0406-0

    Article  Google Scholar 

  26. L. Yang, C.J. Lin, H.M. Jia et al., Abnormal behavior of the optical potential for the halo nuclear system \(^{6}\)He +\(^{209}\)Bi. Phys. Rev. C 96, 044615 (2017). https://doi.org/10.1103/PhysRevC.96.044615

    Article  Google Scholar 

  27. L. Yang, C.J. Lin, H.M. Jia et al., Optical model potentials for \(^{6}\)He +\(^{64}\)Zn from \(^{63}\)Cu(\(^{7}\)Li,\(^{6}\)He)\(^{64}\)Zn. Phys. Rev. C 95, 034616 (2017). https://doi.org/10.1103/PhysRevC.95.034616

    Article  Google Scholar 

  28. L. Yang, C.J. Lin, H.M. Jia et al., Is the dispersion relation applicable for exotic nuclear systems? The abnormal threshold anomaly in the \(^{6}\)He +\(^{209}\)Bi system. Phys. Rev. Lett. 119, 042503 (2017). https://doi.org/10.1103/PhysRevLett.119.042503

    Article  Google Scholar 

  29. L.J. Sun, X.X. Xu, D.Q. Fang et al., \(\beta\)-decay study of the \(T_{\rm z} = -2\) proton rich nucleus \(^{20}\)Mg. Phys. Rev. C 95, 014314 (2017). https://doi.org/10.1103/PhysRevC.95.014314

    Article  Google Scholar 

  30. L.J. Sun, X.X. Xu, C.J. Lin et al., A detection system for charged-particle decay studies with a continuous-implantation method. Nucl. Instrum. Methods A 804, 1 (2015). https://doi.org/10.1016/j.nima.2015.09.039

    Article  Google Scholar 

  31. X.X. Xu, C.J. Lin, H.M. Jia et al., Correlations of two protons emitted from excited states of \(^{28}\)S and \(^{27}\)P. Phys. Lett. B 727, 126 (2013). https://doi.org/10.1016/j.physletb.2013.10.029

    Article  Google Scholar 

  32. X.X. Xu, C.J. Lin, L.J. Sun et al., Observation of \(\beta\)-delayed two-proton emission in the decay of \(^{22}\)Si. Phys. Lett. B 766, 312 (2013). https://doi.org/10.1016/j.physletb.2017.01.028

    Article  Google Scholar 

  33. L.J. Sun, X.X. Xu, C.J. Lin et al., \(\beta\)-decay spectroscopy of \(^{27}\)S. Phys. Rev. C 99, 064312 (2019). https://doi.org/10.1103/PhysRevC.99.064312

    Article  Google Scholar 

  34. L.J. Sun, X.X. Xu, S.Q. Hou et al., Experimentally well-constrained masses of \(^{27}\)P and \(^{27}\)S: implications for studies of explosive binary systems. Phys. Lett. B 802, 135213 (2020). https://doi.org/10.1016/j.physletb.2020.135213

    Article  Google Scholar 

  35. F.F. Duan, Y.Y. Yang, B.T. Hu et al., Silicon detector array for radioactive beam experiments at HIRFL-RIBLL. Nucl. Sci. Tech. 29, 165 (2018). https://doi.org/10.1007/s41365-018-0499-5

    Article  Google Scholar 

  36. Y.T. Wang, D.Q. Fang, X.X. Xu et al., Implantation-decay method to study the \(\beta\)-delayed charged particle decay. Nucl. Sci. Tech. 29, 98 (2018). https://doi.org/10.1007/s41365-018-0438-5

    Article  Google Scholar 

  37. G.L. Zhang, Y.J. Yao, G.X. Zhang et al., A detector setup for the measurement of angular distribution of heavy-ion elastic scattering with low energy on RIBLL. Nucl. Sci. Tech. 28, 104 (2017). https://doi.org/10.1007/s41365-017-0249-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Additional information

This work was supported by the National Key R&D Program of China (No. 2018YFA0404404), the National Natural Science Foundation of China (Nos. 11635015, U1732145, 11705285, 11805280, U1867212, and 11961131012), and the Continuous Basic Scientific Research Project (No. WDJC-2019-13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DX., Lin, CJ., Yang, L. et al. Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. NUCL SCI TECH 31, 48 (2020). https://doi.org/10.1007/s41365-020-00755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00755-0

Keywords

Navigation