Skip to main content

Advertisement

Log in

Characterization of CIAE developed double-sided silicon strip detector for charged particles

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A double-sided silicon strip detector (DSSD) with active area of \({48\, \hbox {mm}}\times {48\, \hbox {mm}}\) and thickness of \({300\, \upmu \hbox {m}}\) has been developed. Each side of DSSD consists of 48 strips, each with width of 0.9 mm and inter-strip separation of 0.1 mm. Electrical properties and detection performances including full depletion bias voltage, reverse leakage current, rise time, energy resolution and cross talk have been studied. At a bias of 80 V, leakage current in each strip is less than 15 nA, and rise time for alpha particle at 5157 keV is approximately 15 ns on both sides. Good energy resolutions have been achieved with 0.65–0.80% for the junction strips and 0.85–1.00% for the ohmic strips. The cross talk is found to be negligible on both sides. The overall good performance of DSSD indicates its readiness for various nuclear physics experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Keil, E. Lindner, Low-noise oxide passivated \(\text{ p }^+\text{ n }\) silicon detectors. Nucl. Instrum. Methods 101, 43–46 (1972). https://doi.org/10.1016/0029-554X(72)90753-7

    Article  Google Scholar 

  2. G. Keil, E. Lindner, Low-noise silicon planar detectors for room temperature application. Nucl. Instrum. Methods 104, 209–214 (1972). https://doi.org/10.1016/0029-554X(72)90319-9

    Article  Google Scholar 

  3. J. Kemmer, Fabrication of low noise silicon radiation detectors by the planar process. Nucl. Instrum. Methods 169, 499–502 (1980). https://doi.org/10.1016/0029-554X(80)90948-9

    Article  Google Scholar 

  4. J. Kemmer, Improvement of detector fabrication by the planar process. Nucl. Instrum. Methods A 226, 89–93 (1984). https://doi.org/10.1016/0168-9002(84)90173-6

    Article  Google Scholar 

  5. A. Ostrowski, S. Cherubini, T. Davinson et al., CD: A double sided silicon strip detector for radioactive nuclear beam experiments. Nucl. Instrum. Methods A 480, 448–455 (2002). https://doi.org/10.1016/S0168-9002(01)00954-8

    Article  Google Scholar 

  6. D. Hutcheon, S. Bishop, L. Buchmann et al., The DRAGON facility for nuclear astrophysics at TRIUMF-ISAC: design, construction and operation. Nucl. Instrum. Methods A 498, 190–210 (2003). https://doi.org/10.1016/S0168-9002(02)01990-3

    Article  Google Scholar 

  7. M. Wallace, M. Famiano, M.-J. van Goethem et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods A 583, 302–312 (2007). https://doi.org/10.1016/j.nima.2007.08.248

    Article  Google Scholar 

  8. T. Davinson, W. Bradfield-Smith, S. Cherubini et al., Louvain–Edinburgh detector array (LEDA): a silicon detector array for use with radioactive nuclear beams. Nucl. Instrum. Methods A 454, 350–358 (2000). https://doi.org/10.1016/S0168-9002(00)00479-4

    Article  Google Scholar 

  9. Y. Blumenfeld, F. Auger, J. Sauvestre et al., MUST: A silicon strip detector array for radioactive beam experiments. Nucl. Instrum. Methods A 421, 471–491 (1999). https://doi.org/10.1016/S0168-9002(98)01178-4

    Article  Google Scholar 

  10. E. Pollacco, E. Atkin, F. Auger et al., MUST II: Large solid angle light charged particle telescope for inverse kinematics studies with radioactive beams. AIP Conf. Proc. 680, 313–316 (2003). https://doi.org/10.1063/1.1619724

    Article  Google Scholar 

  11. C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of two-proton correlated emission from \(^{29}\)S excited states. Phys. Rev. C 80, 014310 (2009). https://doi.org/10.1103/PhysRevC.80.014310

    Article  Google Scholar 

  12. X.X. Xu, C.J. Lin, H.M. Jia et al., Investigation of two-proton emission from excited states of the odd-\(Z\) nucleus \(^{28}\)P by complete-kinematics measurements. Phys. Rev. C 81, 054317 (2010). https://doi.org/10.1103/PhysRevC.81.054317

    Article  Google Scholar 

  13. X.X. Xu, C.J. Lin, H.M. Jia et al., Observation of two-\(\alpha \) emission from high-lying excited states of 18 Ne by complete kinematics measurements. Phys. Rev. C 82, 064316 (2010). https://doi.org/10.1103/PhysRevC.82.064316

    Article  Google Scholar 

  14. X.X. Xu, C.J. Lin, H.M. Jia et al., Correlations of two protons emitted from excited states of \(^{28}\)S and \(^{27}\)P. Phys. Lett. B 727, 126–129 (2013). https://doi.org/10.1016/j.physletb.2013.10.029

    Article  Google Scholar 

  15. P.F. Bao, C.J. Lin, F. Yang et al., Development of large-area quadrant silicon detector for charged particles. Chin. Phys. C 38(12), 126001 (2014). https://doi.org/10.1088/1674-1137/38/12/126001

    Article  Google Scholar 

  16. L.J. Sun, X.X. Xu, C.J. Lin et al., A detection system for charged-particle decay studies with a continuous-implantation method. Nucl. Instrum. Methods A 804, 1–7 (2015). https://doi.org/10.1016/j.nima.2015.09.039

    Article  Google Scholar 

  17. L.J. Sun, X.X. Xu, D.Q. Fang et al., \(\beta \)-decay study of the \(T_z=-2\) proton-rich nucleus \(^{20}\)Mg. Phys. Rev. C 95, 014314 (2017). https://doi.org/10.1103/PhysRevC.95.014314

    Article  Google Scholar 

  18. X.X. Xu, C.J. Lin, L.J. Sun et al., Observation of \(\beta \)-delayed two-proton emission in the decay of 22 Si. Phys. Lett. B 766, 312–316 (2017). https://doi.org/10.1016/j.physletb.2017.01.028

    Article  Google Scholar 

  19. H. Baba, T. Ichihara, T. Ohnishi et al., New data acquisition system for the RIKEN radioactive isotope beam factory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 616(1), 65–68 (2010). https://doi.org/10.1016/j.nima.2010.02.120

    Article  Google Scholar 

  20. J.A. Duenas, G. Pasquali, L. Acosta et al., Characterization of an NTD double-sided silicon strip detector employing a pulsed proton microbeam. IEEE Trans. Nucl. Sci. 64(9), 2551–2560 (2017). https://doi.org/10.1109/TNS.2017.2734568

    Article  Google Scholar 

  21. J. Yorkston, A.C. Shotter, D.B. Syme et al., Nucl. Instrum. Methods A 262, 353–358 (1987). https://doi.org/10.1016/0168-9002(87)90873-4

    Article  Google Scholar 

  22. B. Bruyneel, P. Reiter, A. Wiens et al., Crosstalk properties of 36-fold segmented symmetric hexagonal HPGe detectors. Nucl. Instrum. Methods A 599(2–3), 196–280 (2009). https://doi.org/10.1016/j.nima.2008.11.011

    Article  Google Scholar 

  23. J.E. Lamport, G.M. Mason, M.A. Perkins et al., Nucl. Instrum. Methods 134(1), 71–76 (1976). https://doi.org/10.1016/0029-554X(76)90125-7

    Article  Google Scholar 

  24. L.J. Sun, C.J. Lin, F. Yang et al., Development and test of double-sided silicon strip detector. At. Energy Sci. Technol. 49(2), 336–342 (2015). https://doi.org/10.7538/yzk.2015.49.02.0336.(in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Xing Xu, Cheng-Jian Lin or Jenny Lee.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U1432246, U1632136, U1432127, 11375268, 11635015, and 11475263) and the National Basic Research Program of China (No. 2013CB834404).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XX., Teh, F.C.E., Lin, CJ. et al. Characterization of CIAE developed double-sided silicon strip detector for charged particles. NUCL SCI TECH 29, 73 (2018). https://doi.org/10.1007/s41365-018-0406-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0406-0

Keywords

Navigation