Skip to main content
Log in

An explicit Lagrangian finite element method for free-surface weakly compressible flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In the present work, an explicit finite element approach to the solution of the Lagrangian formulation of the Navier-Stokes equations for weakly compressible fluids or fluid-like materials is investigated. The introduction of a small amount of compressibility is shown to allow for the formulation of a fast and robust explicit solver based on a particle finite element method. Newtonian and Non-Newtonian Bingham laws are considered. A barotropic equation of state completes the model relating pressure and density fields. The approach has been validated through comparison with experimental tests and numerical simulations of free surface fluid problems involving water and water–soil mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bao W, Jin S (2001) Weakly compressible high-order I-stable central difference schemes for incompressible viscous flows. Comput Methods Appl Mech Eng 190(37–38):5009–5026

    Article  MATH  Google Scholar 

  2. Barlow AJ (2008) A compatible finite element multi-material ale hydrodynamics algorithm. Int J Numer Methods Fluids 56(8):953–964

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard-Champmartin A, De Vuyst F (2014) A low diffusive lagrange-remap scheme for the simulation of violent air-water free-surface flows. J Comput Phys 274:19–49

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernard-Champmartin A, Braeunig J-P, Ghidaglia J-ML (2013) An Eulerian finite volume solver for multi-material fluid flows with cylindrical symmetry. Comput Fluids 83:170–176. Numerical methods for highly compressible multi-material flow problems

  6. Braeunig J-P, Desjardins B, Ghidaglia J-M (2009) A totally Eulerian finite volume solver for multi-material fluid flows. Eur J Mech B 28(4):475–485

    Article  MathSciNet  MATH  Google Scholar 

  7. Carbonell JM, Oñate E, Suarez B (2013) Modelling of tunnelling processes and cutting tool wear with the particle finite element method (PFEM). Comput Mech 52(3):607–629

    Article  MATH  Google Scholar 

  8. Chen Z, Zong Z, Liu MB, Li HT (2013) A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. Int J Numer Methods Fluids 73(9):813–829

    MathSciNet  Google Scholar 

  9. Cremonesi M, Ferrara L, Frangi A, Perego U (2010) Simulation of the flow of fresh cement suspensions by a lagrangian finite element approach. J Non Newton Fluid Mech 165:1555–1563

    Article  MATH  Google Scholar 

  10. Cremonesi M, Frangi A, Perego U (2010) A lagrangian finite element approach for the analysis of fluid-structure interaction problems. Int J Numer Methods Eng 84:610–630

    MathSciNet  MATH  Google Scholar 

  11. Cremonesi M, Frangi A, Perego U (2011) A lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093

    Article  Google Scholar 

  12. Dobrev VA, Ellis TE, Kolev TV, Rieben RN (2011) Curvilinear finite elements for lagrangian hydrodynamics. Int J Numer Methods Fluids 65(11–12):1295–1310

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobrev VA, Kolev TV, Rieben RN (2012) High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J Sci Comput 34(5):B606–B641

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner H, Mucke EP (1994) Three dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    Article  MATH  Google Scholar 

  15. Farhat C, Rallu A, Shankaran S (2008) A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions. J Comput Phys 227(16):7674–7700

    Article  MATH  Google Scholar 

  16. Franci A, Cremonesi M (2016) Critical investigation of the particle finite element method. Part I: Volume conservation with remeshing (submitted)

  17. Galera S, Maire P-H, Breil J (2010) A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J Comput Phys 229(16):5755–5787

    Article  MathSciNet  MATH  Google Scholar 

  18. Heller V (2008) Landslide generated impulse waves: prediction of near field characteristics. VAW, Mitteilungen

    Google Scholar 

  19. Hughes TJR, Scovazzi G, Tezduyar TE (2008) Stabilized methods for compressible flows. J Sci Comput 43(3):343–368

    Article  MathSciNet  MATH  Google Scholar 

  20. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767

    Article  MATH  Google Scholar 

  21. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–989

    Article  MathSciNet  MATH  Google Scholar 

  22. Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195:2100–2113

    Article  MathSciNet  MATH  Google Scholar 

  23. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the pfem. Comput Methods Appl Mech Eng 197(19–20):1762–1776

    Article  MathSciNet  MATH  Google Scholar 

  24. Kamran K, Rossi R, Oñate E, Idelsohn SR (2013) A compressible lagrangian framework for modeling the fluid-structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23(02):339–367

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamran K, Rossi R, Oñate E, Idelsohn SR (2013) A compressible lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 255:210–225

    Article  MathSciNet  MATH  Google Scholar 

  26. Keshtiban IJ, Belblidia F, Webster MF (2004) Numerical simulation of compressible viscoelastic liquids. J Non Newton Fluid Mech 122(1–3):131–146

    Article  MATH  Google Scholar 

  27. Komatina D, Jovanovic M (1997) Experimental study of steady and unsteady free surface flows with water-clay mixtures. J Hydraul Res 35(5):579–590

    Article  Google Scholar 

  28. Koshizuka S, Tamako H, Oka Y (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Mech J 113:134–147

    Google Scholar 

  29. Macdonald JR (1966) Some simple isothermal equations of state. Rev Mod Phys 38(4):669–679

    Article  MathSciNet  Google Scholar 

  30. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48:307–318

    Article  MathSciNet  MATH  Google Scholar 

  31. Oñate E, Franci A, Carbonell JM (2014) A particle finite element method for analysis of industrial forming processes. Comput Mech 54:85–107

    Article  MathSciNet  MATH  Google Scholar 

  32. Oñate E, Rossi R, Idelsohn SR, Butler K (2010) Melting and spread of polymers in fire with the particle finite element method. Int J Numer Methods Eng 81(8):1046–1072

    MATH  Google Scholar 

  33. Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731

    Article  MathSciNet  Google Scholar 

  34. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. an overview. Int J Comput Methods 1:267–307

    Article  MATH  Google Scholar 

  35. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404

    Article  MATH  Google Scholar 

  36. Scovazzi G, Christon MA, Hughes TJR, Shadid JN (2007) Stabilized shock hydrodynamics: I. A lagrangian method. Comput Methods Appl Mech Eng 196(4–6):923–966

    Article  MathSciNet  MATH  Google Scholar 

  37. Scovazzi G, Love E, Shashkov MJ (2008) Multi-scale lagrangian shock hydrodynamics on q1/p0 finite elements: theoretical framework and two-dimensional computations. Comput Methods Appl Mech Eng 197(9–12):1056–1079

    Article  MathSciNet  MATH  Google Scholar 

  38. Shadloo MS, Zainali A, Yildiz M, Suleman A (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Methods Eng 89(8):939–956

    Article  MathSciNet  MATH  Google Scholar 

  39. Shao S, Lo EYM (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  40. Waltz J, Morgan NR, Canfield TR, Charest MRJ, Risinger LD, Wohlbier JG (2014) A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids. Comput Fluids 92:172–187

    Article  MathSciNet  Google Scholar 

  41. Xu X, Deng X-L (2016) An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids. Comput Phys Commun 201:43–62

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Cremonesi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremonesi, M., Meduri, S., Perego, U. et al. An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comp. Part. Mech. 4, 357–369 (2017). https://doi.org/10.1007/s40571-016-0122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0122-7

Keywords

Navigation