Skip to main content

Advertisement

Log in

Current Opinions in the Treatment of Pulmonary Nontuberculous Mycobacteria in Non-Cystic Fibrosis Patients: Mycobacterium abscessus Group, Mycobacterium avium Complex, and Mycobacterium kansasii

  • Mycobacterial Infections (J Esteban, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Treatment of pulmonary infections caused by Mycobacterium avium complex (MAC) and Mycobacterium kansasii involves multidrug oral therapy with a macrolide (azithromycin or clarithromycin), ethambutol, and a rifamycin (rifampin or rifabutin). Patients with M. kansasii rapidly respond to a regimen of intermittent (three times weekly) or daily administration of this three-drug regimen. Patients with MAC respond more slowly and often require adjustment of the multidrug regimen because of drug intolerance. The usual treatment for patients with MAC nodular disease takes 15–18 months, with a goal of 12 months of negative cultures. Recent studies support the use of a three-times weekly oral treatment regimen for patients with macrolide-susceptible nodular MAC disease. Patients with upper lobe fibro-cavitary MAC, macrolide-resistant MAC, or severe nodular bronchiectatic disease are usually treated with a daily multidrug regimen supplemented with an injectable antibiotic (amikacin or streptomycin) or, most recently, inhaled preparations of amikacin. Patients with cavitary changes and/or those with macrolide-resistant isolates are often associated with poor treatment response and may require surgical resection in addition to their drug therapy. In contrast to patients with lung disease due to MAC and M. kansasii, the presence of a functional erythromycin ribosomal methylase (erm) gene in the majority of isolates of Mycobacterium abscessus (M. abscessus subsp. abscessus) blocks the activity of macrolides and precludes an effective oral drug regimen for most of these patients. Treatment regimens for macrolide-resistant M. abscessus require long-term intravenous access and parenteral drug combinations of amikacin, cefoxitin, imipenem, and/or tigecycline. Because of the inconvenience of dosing cefoxitin, a regimen of imipenem and amikacin may be preferred. Cure with these agents is infrequent because of the long-term toxicity and expense of these agents. Other treatment options are currently dismal. The role of newer antimicrobials such as tedizolid and bedaquiline has not been evaluated. Approximately 15 % of isolates of subsp. abscessus and all isolates of subsp. massiliense (infrequent in the USA) have a nonfunctional erm gene and are macrolide susceptible, making an oral macrolide an important treatment component and increasing the likelihood of long-term cure of the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: Diagnosis, treatment and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

    Article  CAS  PubMed  Google Scholar 

  2. Clinical and Laboratory Standards Institute. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing: approved guideline. CLSI document 2008;MM18-A.

  3. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes: approved standard—second edition. CLSI document 2011;M24-A2.

  4. Clinical and Laboratory Standards Institute. Laboratory detection and identification of mycobacteria; approved guidelines. CLSI document 2008;M48-A.

  5. Bastian S, Veziris N, Roux A-L, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother. 2011;55:775–81. Describes/correlates molecular sequence types to phenotypic susceptibility in M. abscessus.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kim H-Y, Kim B-J, Kook Y, Yun YJ, Shin JH, Kook YH. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol. 2010;54:347–53.

    Article  CAS  PubMed  Google Scholar 

  7. Leao SC, Tortoli E, Euzeby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. an amended description of Mycobacterium abscessus. Int J Syst Evol Microbiol. 2011;61:2311–3.

    Article  PubMed  Google Scholar 

  8. Zelazny AM, Root JM, Shea YR, et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense and Mycobacterium bolletii. J Clin Microbiol. 2009;47:1985–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tettelin H, Davidson RM, Agrawal S, et al. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis. 2014;20:364–71. Important description of the molecular relatedness of strains that may suggest first person to person transmission among NTM. Also provides basis for acceptance of three subspecies rather than only two subspecies of M. abscessus.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brown-Elliott BA, Nash KA, Wallace Jr RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25:545–82. Recent update describing drug mechanisms, antimicrobial susceptibility methods, and treatment of NTM infections.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Turenne CY, Wallace RJJ, Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev. 2007;20:205–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tran QT, Han XY. Subspecies identification and significance of 257 clinical strains of Mycobacterium avium. J Clin Microbiol 2014;In press.

  13. Jang MA, Koh WJ, Huh HJ, et al. Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J Clin Microbiol. 2014;52(4):1207–12. Important assessment using multiple genes and correlation to clinical significance of NTM.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Teng S-H, Chen C-M, Lee M-R, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate between Mycobacterium massiliense (M. abscessus subspecies bolletii) and M. abscessus (sensu stricto). J Clin Microbiol. 2013;51:3113–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mather CA, Rivera SF, Butler-Wu SM. Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J Clin Microbiol. 2014;52:130–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: Identifying nontuberculous Mycobacterium species. J Clin Microbiol. 2001;39:3637–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Macheras E, Roux A-L, Ripoll F, et al. Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. J Clin Microbiol. 2009;47:2596–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Macheras E, Roux A-L, Bastian S, et al. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu Lato) strains. J Clin Microbiol. 2011;49:491–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shallom SJ, Gardina PJ, Myers TG, et al. New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identification of Mycobacterium massiliense with inducible clarithromycin resistance. J Clin Microbiol. 2013;51:2943–9. Provides more evidence of three subspecies of M. abscessus and information about molecular identificaiton of subspecies.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Blauwendraat C, Dixon GLJ, Hartley JC, Foweraker J, Harris KA. The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae. Eur J Clin Microbiol Infect Dis. 2012;31:1847–53.

    Article  CAS  PubMed  Google Scholar 

  21. Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53:1367–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183:405–10. Provides clinical evidence of the differences in treatment outcomes for patients in Korea with M. abscessus subsp. abscessus compared with M. abscessus subsp. massiliense.

    Article  PubMed  Google Scholar 

  23. Brown-Elliott BA, Wallace Jr RJ. Enhancement of conventional phenotypic methods with molecular-based methods for the more definitive identification of nontuberculous mycobacteria. Clin Microbiol News. 2012;34:109–15. Discusses the superiority of molecular-based methods for identification of NTM compared to conventional methods.

    Article  Google Scholar 

  24. Wallace Jr RJ, Brown-Elliott BA, McNulty S, et al. Macrolide/azalide therapy for nodular-bronchiectatic Mycobacterium avium complex lung disease. Chest. 2014;146:276–82. Recent clinically based publication describing outcomes of US patients with pulmonary MAC who were treated with macrolide-based therapy comparing daily versus three times weekly regimens and azithromycin versus clarithromycin.

    Article  CAS  PubMed  Google Scholar 

  25. Kobashi Y, Abe M, Mouri K, Obase Y, Kato S, Oka M. Relationship between clinical efficacy for pulmonary MAC and drug-sensitivity test for isolated MAC in a recent 6-year period. J Infect Chemother. 2012;18:436–43. Recent clinically based publication describing outcomes of non-US patients with pulmonary MAC as correlated with antimicrobial susceptibility.

    Article  CAS  PubMed  Google Scholar 

  26. Brown-Elliott BA, Iakhiaeva E, Griffith DE, et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol. 2013;51:3389–94. ERRATUM JCM 2014; 52:1311. Recent publication describing the finding of a 16S rRNA gene mutation in patients treated with amikacin who developed amikacin resistance. This paper also shows that in vitro susceptibility testing of amikacin correlates with clinical responses (only the second antimicrobial after clarithromycin to show this correlation).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Letter to the Editor. Am J Respir Crit Care Med. 2012;185:231–3. This is the first report of an outbreak of M. abscessus subsp. massiliense in a cystic fibrosis clinic in the USA. Recent studies suggest that this outbreak may provide evidence for the first report of human-to-human transmission of the M. abscessus group. This is the first report of disease due to an apparent epidemic genotype of M. abscessus subsp. massiliense.

    Article  CAS  PubMed  Google Scholar 

  28. Brown-Elliott BA, Wallace Jr RJ, Tichindelean C, et al. Five year outbreak of community- and hospital-acquired Mycobacterium porcinum infections related to public water supplies. J Clin Microbiol. 2011;49:4231–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. El Sahly HM, Septimus E, Soini H, et al. Mycobacterium simiae pseudo-outbreak resulting from a contaminated hospital water supply in Houston, Texas. Clin Infect Dis. 2002;35:802–7.

    Article  PubMed  Google Scholar 

  30. Iakhiaeva E, McNulty S, Brown-Elliott BA, et al. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of Mycobacterium intracellulare for strain comparison with establishment of a PCR database. J Clin Microbiol. 2013;51:409–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tichenor WS, Thurlow J, McNulty S, Brown-Elliott BA, Wallace Jr RJ, Falkinham III JO. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg Infect Dis. 2012;18:1612–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wallace Jr RJ, Iakhiaeva E, Williams M, et al. Absence of Mycobacterium intracellulare and the presence of Mycobacterium chimaera in household water and biofilm samples of patients in the U.S. with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51:1747–52. This publication describes the absence of M. intracellulare in household water samples and shows that sites other than household water systems should be considered when assessing patients with M. intracellulare. It also demonstrates the presence of a recently described species of MAC (M. chimaera in household water).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Falkinham III JO. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17:419–24.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Yates MD, Grange JM, Collins CH. The nature of mycobacterial disease in Southeast England, 1977-84. J Epidemiol Community Health. 1986;40:295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bardouniotis E, Ceri H, Olson ME. Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum. Curr Microbiol. 2003;46:28–32.

    Article  CAS  PubMed  Google Scholar 

  36. Schulze-Röbbecke R, Feldman C. Fischeder r, Janning B, Exner M, Wahl G. Dental units: an environmental study of sources of potentially pathogenic mycobacteria. Tuberc Lung Dis. 1995;76:318–23.

    Article  Google Scholar 

  37. Falkinham III JO. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol. 2007;56:250–4.

    Article  PubMed  Google Scholar 

  38. Brown-Elliott BA, Wallace Jr RJ. Nontuberculous mycobacteria. In: Mayhall CG, editor. Hospital Epidemiology and Infection Control. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012. p. 593–608.

    Google Scholar 

  39. Research Committee of the British Thoracic Society. First randomised trial of treatments for pulmonary disease caused by M. avium-intracellulare, M. malmoense, and M. xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax. 2001;56:167–72.

    Article  Google Scholar 

  40. Olivier KN, Shaw PA, Glaser TS, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11:30–5. Recent publication providing the first detailed description of the efficacy and adverse events related to the use of inhaled amikacin in the regimen for patients with refractory pulmonary NTM disease (MAC and M. abscessus).

    Article  CAS  PubMed  Google Scholar 

  41. Miwa S, Shirai M, Toyoshima M, et al. Efficacy of clarithromycin and ethambutol for Mycbaacterium avium cxomplex pulmonary disease. A preliminary study. Ann Am Thorac Soc. 2014;11:23–9.

    Article  CAS  PubMed  Google Scholar 

  42. Meier A, Heifets L, Wallace Jr RJ, et al. Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: observation of multiple 23S rDNA mutations in a clonal population. J Infect Dis. 1996;174:354–60.

    Article  CAS  PubMed  Google Scholar 

  43. Griffith DE, Brown-Elliott BA, Langsjoen B, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Resp Crit Care Med. 2006;174:928–34.

    Article  CAS  PubMed  Google Scholar 

  44. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat. 2012;15:149–61. Excellent review of antibiotic resistance mechanisms and antimicrobial susceptibility methods for testing of NTM.

    Article  PubMed  Google Scholar 

  45. Nelson KG, Griffith DE, Brown BA, Wallace Jr RJ. Results of operation in Mycobacterium avium-intracellulare lung disease. Ann Thorac Surg. 1998;66:325–30.

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg. 2008;85:1887–92. discussion 92-3.

  47. Shiraishi Y, Nakajima Y, Takasuna K, Hanaoka T, Katsuragi N, Konno H. Surgery for Mycobacterium avium complex lung disease in the clarithromycin era. Eur J Cardio-Thorac Surg. 2002;21:314–8.

    Article  Google Scholar 

  48. Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardio-Thorac Surg. 2011;40:671–5.

    Article  Google Scholar 

  49. Falkinham 3rd JO, Iseman MD, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6:209–13.

    PubMed  Google Scholar 

  50. Dirac MA, Horan KL, Doody DR, et al. Environment or host? A case-control study of risk factors for Mycobacterium avium complex lung disease. Am J Resp Crit Care Med. 2012;186:684–91.

    Article  PubMed  Google Scholar 

  51. Benwill JL, Philley JV, Taskar V, Brown-Elliott BA, Griffith DE, Wallace RJ Jr. Inhaled amikacin for the treatment of pulmonary Mycobacterium avium complex (MAC) infection. ATS 2014 International Conference 2014:Abstract A4112.

  52. Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATS synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–7.

    Article  CAS  PubMed  Google Scholar 

  53. van Ingen J, Egelund EF, Levin A, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186:559–65.

    Article  PubMed  Google Scholar 

  54. Choi GE, Shin SJ, Won CJ, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186:917–25. Recent publication comparing treatment outcomes of adult (non cystic fibrosis) patients in Korea with M. abscessus subsp. abscessus and M. abscessus subsp. massiliense.

    Article  CAS  PubMed  Google Scholar 

  55. Brown-Elliott BA, S. V, R. V, et al. Sequencing of the erm gene in isolates of Mycobacterium abscessus subspecies abscessus with low clarithromycin MICs. ASM 114th General Meeting 2014. Recent publication describing M. abscessus subsp. abscessus isolates in US patients with a non-functional erm gene sequevar and susceptible clarithromycin MICs following extended incubation.

  56. Czaja CA, Levin A, Moridani M, Krank JL, Curran-Everett D, Anderson PL. Cefoxitin continuous infusion for lung infection caused by Mycobacterium abscessus group. Antimicrob Agents Chemother. 2014;58:3570–1. Describes optimization of cefoxitin treatment for lung infection caused by the M. abscessus group.

    Article  CAS  PubMed  Google Scholar 

  57. Wallace Jr RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69:1945–53. First publication describing clinical experience of a large number of patients with refractory M. abscessus and Mycobacterium chelonae infections who were treated with tigecycline.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jarand JM, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2010;52:564–71.58.

    Google Scholar 

  59. Griffith DE, Girard WM, Wallace Jr RJ. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis. 1993;147:1271–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lobo LJ, Chang LC, Esther Jr CR, Gilligan GH, Tulu Z, Noone PG. Lung transplant outcomes in cystic fibrosis patients with pre-operative Mycobacterium abscessus respiratory infrections. Clin Transpl. 2013;27:523–9.

    Article  Google Scholar 

  61. Thomson R, Tolson C, Sidjabat H, Huygens F, Hargreaves M. Mycobacterium abscessus isolated from municipal water - a potential source of human infection. BMC Infect Dis. 2013;13:241–7.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identity transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381:1551–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Vera-Cabrera L, Brown-Elliott BA, Wallace Jr RJ, et al. In vitro activities of the novel oxazolidinones DA-7867 and DA-7157 against rapidly and slowly growing mycobacteria. Antimicrob Agents Chemother. 2006;50:4027–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Griffith DE, Brown-Elliott BA, Wallace Jr RJ. Thrice-weekly clarithromycin-containing regimen for treatment of Mycobacterium kansasii lung disease: results of a preliminary study. Clin Infect Dis. 2003;37:1178–82.

    Article  CAS  PubMed  Google Scholar 

  65. Wallace Jr RJ, Dunbar D, Brown BA, et al. Rifampin-resistant Mycobacterium kansasii. Clin Infect Dis. 1994;18:736–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Barbara A. Brown-Elliott and Richard J. Wallace, Jr. have grants from Insmed, Amon G. Carter Foundation, Pfizer, and Cubist, and received support for travel to present study data at national meetings. All authors have participated in previous in vitro MIC studies and clinical trials and have received previous funding from Insmed (inhaled amikacin, Arikace), Pfizer Labs (tigecycline, azithromycin), Abbott Labs (clarithromycin), and Pharmacia Labs (rifabutin, linezolid) in addition to receiving research funding from Cubist (tedizolid) and a pending grant from Janssen Pharmaceuticals (bedaquiline) for future in vitro studies to be performed at The University of Texas Health Science Center at Tyler.

Human and Animal Rights and Informed Consent

All clinical trials involving human subjects were approved by the Instititutional Review Board at the University of Texas Health Science Center at Tyler.

This article does not contain any studies with animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Brown-Elliott MS, MT(ASCP)SM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown-Elliott, B.A., Philley, J.V., Benwill, J.L. et al. Current Opinions in the Treatment of Pulmonary Nontuberculous Mycobacteria in Non-Cystic Fibrosis Patients: Mycobacterium abscessus Group, Mycobacterium avium Complex, and Mycobacterium kansasii . Curr Treat Options Infect Dis 6, 392–408 (2014). https://doi.org/10.1007/s40506-014-0032-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-014-0032-2

Keywords

Navigation