Skip to main content

Disease Caused by Mycobacterium Abscessus and Other Rapidly Growing Mycobacteria (RGM)

  • Chapter
  • First Online:
Nontuberculous Mycobacterial Disease

Part of the book series: Respiratory Medicine ((RM))

Abstract

Rapidly growing mycobacteria (RGM) are divided into six major groups including the two clinically most important groups, M. chelonae/M. abscessus complex and Mycobacterium fortuitum group. This chapter discusses infections associated with these groups with an emphasis on pulmonary disease. Phenotypic and molecular laboratory identification methods are reviewed as accurate organism identification is necessary for optimal RGM lung disease patient management. Antimicrobial susceptibility patterns for the most common pathogenic RGM species are discussed with an emphasis on the impact of inducible macrolide resistance found in many RGM species and subspecies. Because of antibiotic resistance, the RGM are frequently difficult to treat successfully. Current therapeutic approaches are reviewed with an emphasis on antibiotic options in the context of both innate and acquired antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobbett L. An acid-fast bacillus obtained from a pustular eruption. Br Med J. 1918;2:158.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Runyon H. Conservation of the specific epithet fortuitum in the name of the organism known as Mycobacterium fortuitum da Costa Cruz. Int J Syst Bacteriol. 1972;22:50–1.

    Google Scholar 

  3. Moore M, Frerichs JB. An unusual acid fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region: report of a case study with a study of the organism, Mycobacterium abscessus. J Investig Dermatol. 1953;20:133–69.

    CAS  PubMed  Google Scholar 

  4. Schinsky MF, Morey RE, Steigerwalt AG, Douglas MP, Wilson RW, Floyd MM, Butler WR, Daneshvar MI, Brown-Elliott BA, Wallace RJ Jr, McNeil MM, Brenner DJ, Brown JM. Taxonomic variation in the Mycobacterium fortuitum third-biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov., Mycobacterium brisbanense sp. nov., and recognition of Mycobacterium porcinum from human clinical isolates. Int J Syst Evol Microbiol. 2004;54:1653–67.

    CAS  PubMed  Google Scholar 

  5. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., M. phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol. 2006;56:133–43.

    PubMed  Google Scholar 

  6. Brown-Elliott BA, Wallace RJ Jr. Mycobacterium: clinical and laboratory characteristics of rapidly growing mycobacteria. In: Manual of clinical microbiology, vol. 1. 11th ed. Washington, D.C: ASM Press; 2015.

    Google Scholar 

  7. Brown BA, Springer B, Steingrube VA, Wilson RW, Pfyffer GE, Garcia MJ, Menendez MC, Rodriguez-Salgado B, Jost KC Jr, Chiu SH, Onyi GO, Bottger EC, Wallace RJ Jr. Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the international working group on mycobacterial taxonomy. Int J Syst Bacteriol. 1999;49:1493–511.

    CAS  PubMed  Google Scholar 

  8. Wallace RJ Jr, Brown-Elliott BA, Wilson RW, Mann L, Hall L, Zhang Y, Jost KC Jr, Brown JM, Kabani A, Schinsky MF, Steigerwalt AG, Crist CJ, Roberts GD, Blacklock Z, Tsukamura M, Silcox V, Turenne C. Clinical and laboratory features of Mycobacterium porcinum. J Clin Microbiol. 2004;42:5689–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiménez MS, Campos-Herrero MI, García D, Luquin M, Herrera L, García MJ. Mycobacterium canariasense sp. nov. Int J Syst Evol Microbiol. 2004;54:1729–34.

    PubMed  Google Scholar 

  10. Whipps CM, Butler WR, Pourahmad F, Watral VG, Kent ML. Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. Rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol. 2007;57:2525–31.

    CAS  PubMed  Google Scholar 

  11. Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev. 2002;15:716–46.

    PubMed  PubMed Central  Google Scholar 

  12. Adékambi T, Drancourt M. Dissection of phylogenetic relationships among nineteen rapidly growing mycobacterium species by 16S r-RNA, hsp65, sodA, recA, and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54:2095–105.

    PubMed  Google Scholar 

  13. Leao SC, Tortoli E, Viana-Niero C, Ueki SYM, Batista Lima KV, Lopes ML, Yubero J, Menendez MC, Garcia MJ. Characterization of mycobacteria from a major Brazilian outbreak suggests a revision of the taxonomic status of members of the Mycobacterium chelonae-abscessus group. J Clin Microbiol. 2009;47:2691–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Leao SC, Tortoli E, Euzeby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. an amended description of Mycobacterium abscessus. Int J Syst Evol Microbiol. 2011;61:2311–3.

    PubMed  Google Scholar 

  15. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, Conlan SS, McNulty S, Brown-Elliott BA, Wallace RJ Jr, Olivier KN, Holland SM, Sampaio EP. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense and Mycobacterium bolletii. J Clin Microbiol. 2009;47:1985–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tortoli E, Kohl TA, Trovato A, Garcia MJ, Leao SC, Baldan R, Campana S, Cariani L, Colombo C, Costa D, Pizzamiglio G, Rancoita PM, Russo MC, Simonetti TM, Sottotetti S, Taccetti G, Teri A, Niemann S, Cirillo DM, Brown-Elliott BA, Wallace Jr. RJ. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus, Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense subsp. nov. Int J Syst Evol Microbiol. 2016; In press.

    Google Scholar 

  17. Tettelin H, Davidson RM, Agrawal S, Aitken ML, Shallom S, Hasan NA, Strong M, de Moura VCN, De Groote MA, Duarte RS, Hine E, Parankush S, Su Q, Daugherty SC, Fraser CM, Brown-Elliott BA, Wallace RJ Jr, Holland SM, Sampaio EP, Olivier KN, Jackson M, Zelazny AM. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis. 2014;20:364–71.

    PubMed  PubMed Central  Google Scholar 

  18. Adekambi T, Sassi M, van Ingen J, Drancourt M. Reinstating Mycobacterium massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus complex. Int J Syst Evol Microbiol. 2017;67(8):2726–30.

    CAS  PubMed  Google Scholar 

  19. Kim K, Hong S-H, Kim B-J, Kim B-R, Lee S-Y, Kim G-N, Shim TS, Kook Y-H, Kim B-J. Separation of Mycobacterium abscessus into subspecies or genotype level by direct application of peptide nucleic acid multi-probe-real-time PCR method into sputa samples. BMC Infect Dis. 2015;15:325–31.

    PubMed  PubMed Central  Google Scholar 

  20. Tan JL, Ngeow YF, Choo SW. Support from phylogenomic networks and subspecies signatures for separation of Mycobacterium massiliense from Mycobacterium bolletii. J Clin Microbiol. 2015;53:3042–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev. 2014;27:727–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic actinomycetes. J Clin Microbiol. 2016;54:376–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saleeb PG, Drake SK, Murray PR, Zelazny AM. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:1790–4.

    PubMed  PubMed Central  Google Scholar 

  24. Tortoli E, Nanetti A, Piersimoni C, Cichero P, Farina C, Mucignat G, Scarparo C, Bartolini L, Valentini R, Nista D, Gesu G, Passerini Tosi C, Crovatto M, Brusarosco G. Performance assessment of new multiplex probe assay for identification of mycobacteria. J Clin Microbiol. 2001;39:1079–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tortoli E, Pecorari M, Fabio G, Messinò M, Fabio A. Commercial DNA probes for mycobacteria incorrectly identify a number of less frequently encountered species. J Clin Microbiol. 2010;48:307–10.

    CAS  PubMed  Google Scholar 

  26. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16:319–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Steingrube VA, Gibson JL, Brown BA, Zhang Y, Wilson RW, Rajagopalan M, Wallace RJ Jr. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria [ERRATUM 1995;33:1686]. J Clin Microbiol. 1995;33:149–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31:175–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G, Black WA, Isaac-Renton J. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol. 2004;42:3000–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adékambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B, Raoult D, Drancourt M. Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol. 2004;42:5493–501.

    PubMed  PubMed Central  Google Scholar 

  31. Adékambi T, Colson P, Drancourt M. rpo B-based identification of nonpigmented and late pigmented rapidly growing mycobacteria. J Clin Microbiol. 2003;41:5699–708.

    PubMed  PubMed Central  Google Scholar 

  32. Kim H-Y, Kook Y, Yun Y-J, Park CG, Lee NY, Shim TS, Kim B-J, Kook Y-H. Proportion of Mycobacterium massiliense and Mycobacterium bolletii in strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol. 2008;46:3384–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Forbes BA, Banaiee N, Beavis KG, Brown-Elliott BA, Della Latta P, Elliott LB, Hall GS, Hanna B, Perkins MD, Siddiqi SH, Wallace Jr. RJ, Warren NG. Laboratory detection and identification of mycobacteria; approved guideline. CLSI document M48-A. 2008.

    Google Scholar 

  34. Ngeow YF, Wee WY, Wong YL, Tan JL, Ongi CS, Ng KP, Choo SW. Genomic analysis of Mycobacterium abscessus strain M139, which has an ambiguous subspecies taxonomic position. J Bacteriol. 2012;194:6002–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP, Choo SW. Genomic analysis of Mycobacterium massiliense strain M115, an isolate from human sputum. J Bacteriol. 2012;194:4786.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ngeow YF, Wong YL, Tan JL, Arumugam R, Wong GJ, Ong CS, Ng KP, Choo SW. Genome sequence of Mycobacterium massiliense M18, isolated from a lymph node biopsy specimen. J Bacteriol. 2012;194:4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tettelin H, Sampaio EP, Daugherty SC, Hine E, Riley DR, Sadzewicz L, Sengamalay N, Shefchek K, Su Q, Tallon LJ, Conville P, Olivier KN, Holland SM, Fraser CM, Zelazny AM. Genomic insights into the emerging human pathogen Mycobacterium massiliense. J Bacteriol. 2012;194:5450.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan J, Halachev M, Yates E, Smith G, Pallen M. Whole-genome sequence of the emerging pathogen Mycobacterium abscessus strain 47J26. J Bacteriol. 2012;194:549.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381:1551–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Davidson RM, Hasan N, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy P, Heifets L, Daley CL, Strong M. Genome sequencing of Mycobacterium abscessus isolates from patients in the United States and comparisons to globally diverse clinical strains. J Clin Microbiol. 2014;52:3573–82.

    PubMed  PubMed Central  Google Scholar 

  41. Wolinsky E. State of the art: nontuberculous mycobacterial and associated disease. Am Rev Respir Dis. 1979;119:107–59.

    CAS  PubMed  Google Scholar 

  42. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K. An official ATS/IDSA statement: diagnosis, treatment and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

    CAS  PubMed  Google Scholar 

  43. Thomson R, Tolson C, Sidjabat H, Huygens F, Hargreaves M. Mycobacterium abscessus isolated from municipal water - a potential source of human infection. BMC Infect Dis. 2013;13:241.

    PubMed  PubMed Central  Google Scholar 

  44. Falkinham JO. The changing pattern of nontuberculous mycobacterial disease. Can. J Infect Dis. 2003;14:281–6.

    Google Scholar 

  45. Griffith DE, Philley JV, Brown-Elliott BA, Benwill JL, Shepherd S, York D, Wallace RJ Jr. The significance of Mycobacterium abscessus subspecies abscessus isolation during Mycobacterium avium complex lung disease therapy. Chest. 2015;147(5):1369–75.

    PubMed  Google Scholar 

  46. Jun HJ, Jeon K, Um SW, Kwon OJ, Lee NY, Koh WJ. Nontuberculous mycobacteria isolated during the treatment of pulmonary tuberculosis. Respir Med. 2009;103(12):1936–40.

    PubMed  Google Scholar 

  47. Cullen AR, Cannon CL, Mark EJ, Colin AA. Mycobacterium abscessus infection in cystic fibrosis. Am J Respir Crit Care Med. 2000;161:641–5.

    CAS  PubMed  Google Scholar 

  48. Fauroux B, Delaisi B, Clément A, Saizou C, Moissenet D, Truffot-Pernot C, Tournier G, Vu Thien H. Mycobacterial lung disease in cystic fibrosis: a prospective study. Pediatr Infect Dis J. 1997;16:354–8.

    CAS  PubMed  Google Scholar 

  49. Olivier KN, Weber DJ, Wallace RJ Jr, Faiz AR, Lee J-H, Zhang Y, Brown-Elliott BA, Handler A, Wilson RW, Schechter MS, Edwards LJ, Chakraborti S, Knowles MR, Group ftNMiCFS. Nontuberculous mycobacteria. I. Multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med. 2003;167:828–34.

    PubMed  Google Scholar 

  50. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss GH, Tonelli MR, Cangelosi GA, Ashworth M, Olivier KN, Brown-Elliott BA, Wallace RJ Jr. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Letter to the Editor Am J Respir Crit Care Med. 2012;185:231–3.

    CAS  Google Scholar 

  51. Roux A-L, Catherinot E, Ripoll F, Soismier N, Macheras E, Ravilly S, Bellis G, Vibet M-A, Le Roux E, Lemonnier L, Gutierrez C, Vincent V, Fauroux B, Rottman M, Guillemot D, Gaillard J-L, Herrman J-L, Group. ftO. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol. 2009;47:4124–8.

    PubMed  PubMed Central  Google Scholar 

  52. Cândido PHC, De Souza Nunes L, Marques EA, Folescu TW, Coelho FS, Nogueira de Moura VC, da Silva MG, Gomes KM, da Silva Lourenço MC, Aguiar FS, Chitolina F, Armstrong DT, Leão SC, Neves FPG, de Queiroz Mello FC, Duarte RS. 2014. Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients. J Clin Microbiol 58:2990–2997 [52] Gubler JGH, Salfinger M, von Graevenitz A. 1992. Pseudoepidemic of nontuberculous mycobacteria due to a contaminated bronchoscope cleaning machine: report of an outbreak and review of the literature. Chest. 101:1245–1249.

    Google Scholar 

  53. Tiwari TSP, Ray B, Jost KC Jr, Rathod MK, Zhang Y, Brown-Elliott BA, Hendricks K, Wallace RJ Jr. Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin Infect Dis. 2003;36:954–62.

    CAS  PubMed  Google Scholar 

  54. Hector JSR, Pang Y, Mazurek GH, Zhang Y, Brown BA, Wallace RJ Jr. Large restriction fragment patterns of genomic Mycobacterium fortuitum DNA as strain-specific markers and their use in epidemiologic investigation of four nosocomial outbreaks. J Clin Microbiol. 1992;30:1250–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Rajagopalan M, Brown BA, Wallace RJ Jr. Randomly amplified polymorphic DNA PCR for comparison of Mycobacterium abscessus strains from nosocomial outbreaks. J Clin Microbiol. 1997;35:3132–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carson LA, Bland LA, Cusick LB, Favero MS, Bolan GA, Reingold AL, Good RC. Prevalence of nontuberculous mycobacteria in water supplies of hemodialysis centers. App Environ Microbiol. 1988;54:3122–5.

    CAS  Google Scholar 

  57. Schulze-Röbbecke R, Janning B, Fischeder R. Occurrence of mycobacteria in biofilm samples. Tuberc Lung Dis. 1992;73:141–4.

    Google Scholar 

  58. Galassi L, Donato R, Tortoli E, Burrini D, Santianni D, Dei R. Nontuberculous mycobacteria in hospital water systems: application of HPLC for identification of environmental mycobacteria. J Water Health. 2003;1:133–9.

    CAS  PubMed  Google Scholar 

  59. Sudesh S, Cohen EJ, Schwartz LW, Myers JS. Mycobacterium chelonae infection in a corneal graft. Arch Ophthalmol. 2000;118:294–5.

    CAS  PubMed  Google Scholar 

  60. Reviglio V, Rodriguez ML, Picotti GS, Paradello M, Luna JD, Juárez CP. Mycobacterium chelonae keratitis following laser in situ keratomileusis. J Refract Surg. 1998;14:357–60.

    CAS  PubMed  Google Scholar 

  61. Saluja A, Peters NT, Lowe L, Johnson TM. A surgical wound infection due to Mycobacterium chelonae successfully treated with clarithromycin. Dermatol Surg. 1997;23:539–43.

    CAS  PubMed  Google Scholar 

  62. Friedman ND, Sexton DJ. Bursitis due to Mycobacterium goodii, a recently described, rapidly growing mycobacterium. J Clin Microbiol. 2001;39:404–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyers H, Brown-Elliott BA, Moore D, Curry J, Truong C, Zhang Y, Wallace RJ Jr. An outbreak of Mycobacterium chelonae infection following liposuction. Clin Infect Dis. 2002;34:1500–7.

    PubMed  Google Scholar 

  64. Centers for Disease Control and Prevention. Rapidly growing mycobacterial infection following liposuction and liposculpture—Caracas, Venezuela, 1996-1998. Morb Mortal Wkly Rep. 1998;47:1065.

    Google Scholar 

  65. Nagpal A, Wentink JE, Berbari EF, Aronhalt KC, Wright AJ, Krageschmidt DA, Wengenack NL, Thompson RI, Tosh PK. A cluster of Mycobacterium wolinskyi surgical site infection at an academic medical center. Infect Control Hosp Epidemiol. 2014;35:1169–75.

    PubMed  Google Scholar 

  66. Dupont C, Terru D, Aguilhon S, Frapier J-M, Paquis M-P, Morquin D, Lamy B, Godreuil S, Parer S, Lotthé A, Jumas-Bilak E, Romano-Bertrand S. Source-case investigation of Mycobacterium wolinskyi cardiac surgical site infection. J Hosp Infect. 2016; In press.

    Google Scholar 

  67. Ariza-Heredia EJ, Databneh AS, Wilhelm MP, Wengenack NL, Razonable RR, Wilson JW. Mycobacterium wolinskyi: a case series and review of the literature. Diagn Microbiol Infect Dis. 2011;71:421–7.

    PubMed  Google Scholar 

  68. Bossart S, Schnell B, Kerl K, Urosevic-Maiwald M. Ulcers as a sign of skin infection with Mycobacterium wolinskyi: report of a case and review of the literature. Case Rep Dermatol. 2016;8:151–5.

    PubMed  PubMed Central  Google Scholar 

  69. Lai KK, Brown BA, Westerling JA, Fontecchio SA, Zhang Y, Wallace RJ Jr. Long-term laboratory contamination by Mycobacterium abscessus resulting in two pseudo-outbreaks: recognition with use of random amplified polymorphic DNA (RAPD) polymerase chain reaction. Clin Infect Dis. 1998;27:169–75.

    CAS  PubMed  Google Scholar 

  70. Wilson RW, Steingrube VA, Böttger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC Jr, Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ Jr. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks, and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol. 2001;51:1751–64.

    CAS  PubMed  Google Scholar 

  71. Baker AW, Lewis SS, Alexander BD, Chen LF, Wall S, Wallace RJ Jr, Brown-Elliott BA, Isaacs PJ, Pickett LC, Patel CB, Smith PK, Reynolds JM, Engel J, Wolfe CR, Milano CA, Schroder JN, Davis RD, Hartwig MG, Stout JE, Strittholt N, Maziarz EK, Saullo JH, Hazen KC, Walczak RJ Jr, Vasireddy R, Vasireddy S, CM MK, Anderson DJ, Sexton DJ. A cluster of Mycobacterium abscessus among lung transplant patients: investigation and mitigation. Clin Infect Dis. 2017;64(7):902–11.

    PubMed  PubMed Central  Google Scholar 

  72. Brown-Elliott BA, Wallace RJ Jr, Petti CA, Mann LB, McGlasson M, Chihara S, Smith GL, Painter P, Hail D, Wilson R, Simmon KE. Mycobacterium neoaurum and Mycobacterium bacteremicum sp. nov. as causes of bacteremia. J Clin Microbiol. 2010;48:4377–85.

    PubMed  PubMed Central  Google Scholar 

  73. Raad II, Vartivarian S, Khan A, Bodey GP. Catheter-related infections caused by the Mycobacterium fortuitum complex: 15 cases and review. Rev Infect Dis. 1991;13:1120–5.

    CAS  PubMed  Google Scholar 

  74. Washer LL, Riddell IVJ, Rider J, Chenoweth CE. Mycobacterium neoaurum bloodstream infection: report of 4 cases and review of the literature. Clin Infect Dis. 2007;45:e10–3.

    PubMed  Google Scholar 

  75. Martínez López AB, Álvarez Blanco O, Ruíz Serrano MJ, Morales San-José MD, Luque de Pablos A. Mycobacterium fortuitum as a cause of peritoneal dialysis catheter port infection. A clinical case and a review of the literature. Nefrologia. 2015;35:584–6.

    PubMed  Google Scholar 

  76. Al Shaalan M, Law BJ, Israels SJ, Pianosi P, Lacson AG, Higgins R. Mycobacterium fortuitum interstitial pneumonia with vasculitis in a child with Wilms tumor. Pediatr Infect Dis J. 1997;16:996–1000.

    PubMed  Google Scholar 

  77. Levendoglu-Tugal O, Munoz J, Brudnicki A, Ozkaynak MF, Sandoval C, Jayabose S. Infections due to nontuberculous mycobacteria in children with leukemia. Clin Infect Dis. 1998;27:1227–30.

    CAS  PubMed  Google Scholar 

  78. Tahara M, Yatera K, Yamasaki K, Orihashi T, Hirosawa M, Ogoshi T, Noguchi S, Nishida C, Ishimoto H, Yonezawa A, Tsukada J, Mukae H. Disseminated Mycobacterium abscessus complex infection manifesting as multiple areas of lymphadenitis and skin abscess in the preclinical stage of acute lymphocytic leukemia. Intern Med. 2016;55:1787–91.

    PubMed  Google Scholar 

  79. Chetchotisakd P, Mootsikapun P, Anunnatsiri S, Jirarattanapochai K, Choonhakarn C, Chaiprasert A, Ubol PN, Wheat LJ, Davis TE. Disseminated infection due to rapidly growing mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: a previously unrecognized clinical entity. Clin Infect Dis. 2000;32:29–34.

    Google Scholar 

  80. Brown-Elliott BA, Mann LB, Hail D, Whitney C, Wallace RJ Jr. Antimicrobial susceptibility of nontuberculous mycobacteria from eye infections. Cornea. 2012;31:900–6.

    PubMed  Google Scholar 

  81. Cooksey RC, de Waard JH, Yakrus MA, Rivera I, Chopite M, Toney SR, Morlock GP, Butler WR. Mycobacterium cosmeticum sp. nov., a novel rapidly growing species isolated from a cosmetic infection and from a nail salon. Int J Syst Evol Microbiol. 2004;54:2385–91.

    CAS  PubMed  Google Scholar 

  82. Gira AK, Reisenauer H, Hammock L, Nadiminti U, Macy JT, Reeves A, Burnett C, Yakrus MA, Toney S, Jensen BJ, Blumberg HM, Caughman SW, Nolte FS. Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol. 2004;42:1813–7.

    PubMed  PubMed Central  Google Scholar 

  83. Winthrop KL, Albridge K, South D, Albrecht P, Abrams M, Samuel MC, Leonard W, Wagner J, Vugia DJ. The clinical management and outcome of nail salon-acquired Mycobacterium fortuitum skin infection. Clin Infect Dis. 2004;38:38–44.

    PubMed  Google Scholar 

  84. Vugia DJ, Jang Y, Zizek C, Ely J, Winthrop KL, Desmond E. Mycobacteria in nail salon whirlpool footbaths. California Emerg Infect Dis. 2005;11:616–8.

    PubMed  Google Scholar 

  85. Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis. 2009;15:1556–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Czaja CA, Merkel PA, Chan ED, Lenz LL, Wolf ML, Alam R, Franke SK, Fischer A, Gogate S, Perez-Velez CM, Knight V. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-γ autoantibody. Clin. Infect. Dis. In: 58:e-115-118; 2014.

    Google Scholar 

  87. Valour F, Perpoint T, Sénéchal A, Kong X-F, Bustamante J, Ferry T, Chidiac C, Ader A, group obotLTs. Interferon-γ autoantibodies as predisposing factor for nontuberculous mycobacterial infection. Emerg. Infect. Dis. 2016;22:1124–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes: approved standard—second edition. CLSI document M24-A2. 2011.

    Google Scholar 

  89. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes. 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. To be submitted

    Google Scholar 

  90. Brown BA, Wallace RJ Jr, Onyi GO, De Rosas V, Wallace RJ III. Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob Agents Chemother. 1992;36:180–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nash KA. Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38). Antimicrob Agents Chemother. 2003;47:3053–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother. 2006;50:3476–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53:1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005;55:170–7.

    CAS  PubMed  Google Scholar 

  95. Koh WJ, Jeon K, Lee NY, Kim B-J, Kook Y-H, Lee S-H, Park Y-K, Kim CK, Shin SJ, Huitt GA, Daley CL, Kwon OJ. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183:405–10.

    PubMed  Google Scholar 

  96. Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int J Tuberc Lung Dis. 2014;18(10):1141–8.

    PubMed  Google Scholar 

  97. Wallace RJ Jr, Brown-Elliott BA, Crist CJ, Mann L, Wilson RW. Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother. 2002;46:3164–7.

    CAS  PubMed  Google Scholar 

  98. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, Turenne CY, Wallace Jr. RJ. 2013. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol 51:3389–3394. ERRATUM JCM 2014; 3352:1311.

    Google Scholar 

  99. Olivier KN, Griffith DE, Eagle G, McGinnis II JP, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ, Flume PA, Dorgan D, Salathe M, Brown-Elliott BA, Gupta R, Wallace Jr. RJ. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2016; Submitted.

    Google Scholar 

  100. Wallace RJ Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2001;45:764–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Brown-Elliott BA, Wallace RJJ, Blinkhorn R, Crist CJ, Mann LB. Successful treatment of disseminated Mycobacterium chelonae infection with linezolid. Clin Infect Dis. 2001;33:1433–4.

    CAS  PubMed  Google Scholar 

  102. Brown-Elliott BA, Philley JV, Griffith DE, Wallace RJ Jr. Comparison of in vitro susceptibility testing of tedizolid (TZD) and linezolid (LZD) against isolates of nontuberculous mycobacteria (NTM). Boston, MA: General Meeting of the American Society of Microbiology 2016; 2016.

    Google Scholar 

  103. Wallace RJ Jr, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen G-H, Wu B-D, Hu S-T, Lin C-F, Wu K-M, Chen J-H. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents. 2010;35:400–4.

    CAS  PubMed  Google Scholar 

  105. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7.

    PubMed  PubMed Central  Google Scholar 

  106. Yang B, Jhun BW, Moon SM, Lee H, Park HY, Jeon K, Kim DH, Kim SY, Shin SJ, Daley CL, Koh WJ. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017;61(6):e02052–16.

    PubMed  PubMed Central  Google Scholar 

  107. Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, Aksamit TR, Griffith DE. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015;148:499–506.

    PubMed  PubMed Central  Google Scholar 

  108. Maurer FP, Bruderer VL, Ritter C, Castelberg C, Bloemberg GV, Böttger EC. Lack of antimicrobial bactericidal activity in Mycobacterium abscessus. Antimicrob Agents Chemother. 2014;58:3828–36.

    PubMed  PubMed Central  Google Scholar 

  109. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat. 2012;15:149–61.

    PubMed  Google Scholar 

  110. Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K, Parodi N, Strong A, Gee M, Smith T, Wallace RJ Jr. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol. 2015;53(4):1211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, Huh HJ, Ki CS, Lee NY, Le SH, Kim CK, Daley CL, Shin SJ, Kim H, Kwon OJ. Oral macrolide therapy following short-term combination antibiotic treatment for Mycobacterium massiliense lung disease. Chest. 2016;150(6):1211–21.

    PubMed  Google Scholar 

  112. Choi H, Kim S-Y, Kim DH, Huh HJ, Ki C-S, Lee NY, Lee S-H, Shin S, Shin SJ, Daley CL, Koh W-J. Clinical characteristics and treatment outcomes of patients with acquired macrolide-resistant Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017;61:e01146–17, https://doi.org/10.1128/AAC.01146–17.

  113. Choi H, Kim SY, Lee H, Jhun BW, Park HY, Jeon K, Kim DH, Huh HJ, Ki CS, Lee NY, Lee SH, Shin SJ, Daley CL, Clinical Characteristics KWJ. Treatment outcomes of patients with macrolide-resistant Mycobacterium massiliense lung disease. Antimicrob Agents Chemother. 2017;61(2):293–5

    Google Scholar 

  114. Griffith DE, Aksamit TR. Nontuberculous mycobacterial disease therapy: take it to the limit one more time. Chest. 2016;150(6):1177–8.

    PubMed  Google Scholar 

  115. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52(5):565–71.

    PubMed  Google Scholar 

  116. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Koh WJ. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902.

    CAS  PubMed  Google Scholar 

  117. Lyu J, Jang HJ, Song JW, Choi CM, Oh YM, Lee SD, Kim WS, Kim DS, Shim TS. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med. 2011;105(5):781–7.

    PubMed  Google Scholar 

  118. Harada T, Akiyama Y, Kurashima A, Nagai H, Tsuyuguchi K, Fujii T, Yano S, Shigeto E, Kuraoka T, Kajiki A, Kobashi Y, Kokubu F, Sato A, Yoshida S, Iwamoto T, Saito H. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol. 2012;50(11):3556–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Roux AL, Catherinot E, Soismier N, Heym B, Bellis G, Lemonnier L, Chiron R, Fauroux B, Le Bourgeois M, Munck A, Pin I, Sermet I, Gutierrez C, Véziris N, Jarlier V, Cambau E, Herrmann JL, Guillemot D, Gaillard JL, group O. Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. J Cyst Fibros. 2015;14:63–9.

    PubMed  Google Scholar 

  120. Lee SH, Yoo HK, Kim SH, Koh WJ, Kim CK, Park YK, Kim HJ. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med. 2014;34(1):31–7.

    PubMed  Google Scholar 

  121. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Ermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS. US Cystic Fibrosis Foundation and European cystic fibrosis society. US Cystic Fibrosis Foundation and European cystic fibrosis society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1–22.

    PubMed  Google Scholar 

Download references

Acknowledgments

We humbly acknowledge and thank our patients with M. abscessus lung disease whose patience with their physicians, courage and strength are both boundless and inspirational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie V. Philley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Philley, J.V., Griffith, D.E. (2019). Disease Caused by Mycobacterium Abscessus and Other Rapidly Growing Mycobacteria (RGM). In: Griffith, D. (eds) Nontuberculous Mycobacterial Disease. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93473-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93473-0_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93472-3

  • Online ISBN: 978-3-319-93473-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics