Skip to main content

Advertisement

Log in

The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Mycobacterium abscessus [M. abscessus (sensu lato) or M. abscessus complex] comprises three closely related species: M. abscessus (sensu stricto), hereafter referred to as M. abscessus, M. bolletii and M. massiliense. We describe here an accurate and robust method for distinguishing M. chelonae from M. abscessus, M. bolletii and M. massiliense, using polymerase chain reaction (PCR) and the sequencing of house-keeping gene targets (hsp65 and rpoB). Sequencing of the sodA gene is of little additional value in discriminating between species, but M. massiliense can be rapidly identified by amplification of the truncated erm(41) gene without the need for amplicon sequencing. We have applied the method to 81 isolates from 40 patients from two hospitals, the majority of whom were cystic fibrosis (CF) patients. Of these patients, 21 had previously been identified as M. chelonae and 59 as M. abscessus complex using commercial line probe assays. We identified these as 46 M. abscessus isolates, 20 M. massiliense isolates, five M. bolletii isolates and nine M. chelonae isolates and confirmed the one M. fortuitum isolate. This is the first study that has identified the individual members of the M. abscessus complex in a UK cohort of mainly CF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am 43:273–290

    PubMed  CAS  Google Scholar 

  2. Chan ED, Bai X, Kartalija M, Orme IM, Ordway DJ (2010) Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am J Respir Cell Mol Biol 43(4):387–393

    Article  PubMed  CAS  Google Scholar 

  3. Adékambi T, Berger P, Raoult D, Drancourt M (2006) rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 56:133–143

    Article  PubMed  Google Scholar 

  4. Adékambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B, Raoult D, Drancourt M (2004) Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 42:5493–5501

    Article  PubMed  Google Scholar 

  5. Leao SC, Tortoli E, Viana-Niero C, Ueki SY, Lima KV, Lopes ML, Yubero J, Menendez MC, Garcia MJ (2009) Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonaeM. abscessus group is needed. J Clin Microbiol 47:2691–2698

    Article  PubMed  CAS  Google Scholar 

  6. Bange FC, Brown BA, Smaczny C, Wallace RJ Jr, Böttger EC (2001) Lack of transmission of Mycobacterium abscessus among patients with cystic fibrosis attending a single clinic. Clin Infect Dis 32:1648–1650

    Article  PubMed  CAS  Google Scholar 

  7. Olivier KN, Weber DJ, Wallace RJ Jr, Faiz AR, Lee JH, Zhang Y, Brown-Elliot BA, Handler A, Wilson RW, Schechter MS, Edwards LJ, Chakraborti S, Knowles MR; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group (2003) Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 167:828–834

    Article  PubMed  Google Scholar 

  8. Olivier KN, Yankaskas JR, Knowles MR (1996) Nontuberculous mycobacterial pulmonary disease in cystic fibrosis. Semin Respir Infect 11:272–284

    PubMed  CAS  Google Scholar 

  9. Cystic Fibrosis Trust. Home page at: http://www.cftrust.org.uk. Accessed 5 October 2010

  10. Pierre-Audigier C, Ferroni A, Sermet-Gaudelus I, Le Bourgeois M, Offredo C, Vu-Thien H, Fauroux B, Mariani P, Munck A, Bingen E, Guillemot D, Quesne G, Vincent V, Berche P, Gaillard JL (2005) Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J Clin Microbiol 43:3467–3470

    Article  PubMed  Google Scholar 

  11. Roux AL, Catherinot E, Ripoll F, Soismier N, Macheras E, Ravilly S, Bellis G, Vibet MA, Le Roux E, Lemonnier L, Gutierrez C, Vincent V, Fauroux B, Rottman M, Guillemot D, Gaillard JL; Jean-Louis Herrmann for the OMA Group (2009) Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol. 47:4124–4128

    Article  PubMed  Google Scholar 

  12. Sermet-Gaudelus I, Le Bourgeois M, Pierre-Audigier C, Offredo C, Guillemot D, Halley S, Akoua-Koffi C, Vincent V, Sivadon-Tardy V, Ferroni A, Berche P, Scheinmann P, Lenoir G, Gaillard JL (2003) Mycobacterium abscessus and children with cystic fibrosis. Emerg Infect Dis 9:1587–1591

    Article  PubMed  Google Scholar 

  13. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416

    Article  PubMed  CAS  Google Scholar 

  14. Chalermskulrat W, Sood N, Neuringer IP, Hecker TM, Chang L, Rivera MP, Paradowski LJ, Aris RM (2006) Non-tuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. Thorax 61:507–513

    Article  PubMed  CAS  Google Scholar 

  15. Sanguinetti M, Ardito F, Fiscarelli E, La Sorda M, D’Argenio P, Ricciotti G, Fadda G (2001) Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J Clin Microbiol 39:816–819

    Article  PubMed  CAS  Google Scholar 

  16. Taylor JL, Palmer SM (2006) Mycobacterium abscessus chest wall and pulmonary infection in a cystic fibrosis lung transplant recipient. J Heart Lung Transplant 25:985–988

    Article  PubMed  Google Scholar 

  17. Trulock EP, Bolman RM, Genton R (1989) Pulmonary disease caused by Mycobacterium chelonae in a heart-lung transplant recipient with obliterative bronchiolitis. Am Rev Respir Dis 140:802–805

    PubMed  CAS  Google Scholar 

  18. Malouf MA, Glanville AR (1999) The spectrum of mycobacterial infection after lung transplantation. Am J Respir Crit Care Med 160:1611–1616

    PubMed  CAS  Google Scholar 

  19. Morales P, Ros JA, Blanes M, Pérez-Enguix D, Saiz V, Santos M (2007) Successful recovery after disseminated infection due to Mycobacterium abscessus in a lung transplant patient: subcutaneous nodule as first manifestation—a case report. Transplant Proc 39:2413–2415

    Article  PubMed  CAS  Google Scholar 

  20. Gilljam M, Scherstén H, Silverborn M, Jönsson B, Ericsson Hollsing A (2010) Lung transplantation in patients with cystic fibrosis and Mycobacterium abscessus infection. J Cyst Fibros 9:272–276

    Article  PubMed  Google Scholar 

  21. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Shin SJ, Huitt GA, Daley CL, Kwon OJ (2011) Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 183:405–410

    Article  PubMed  Google Scholar 

  22. Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Piersimoni C (2001) Direct identification of mycobacteria from MB/BacT Alert 3D bottles: comparative evaluation of two commercial probe assays. J Clin Microbiol 39:3222–3227

    Article  PubMed  CAS  Google Scholar 

  23. Devulder G, Pérouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302

    Article  PubMed  CAS  Google Scholar 

  24. Adékambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41:5699–5708

    Article  PubMed  Google Scholar 

  25. Macheras E, Roux AL, Ripoll F, Sivadon-Tardy V, Gutierrez C, Gaillard JL, Heym B (2009) Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. J Clin Microbiol 47:2596–2600

    Article  PubMed  CAS  Google Scholar 

  26. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, Conlan S, McNulty S, Brown-Elliott BA, Wallace RJ Jr, Olivier KN, Holland SM, Sampaio EP (2009) Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol 47:1985–1995

    Article  PubMed  CAS  Google Scholar 

  27. Ringuet H, Akoua-Koffi C, Honore S, Varnerot A, Vincent V, Berche P, Gaillard JL, Pierre-Audigier C (1999) hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37:852–857

    PubMed  CAS  Google Scholar 

  28. Kim HY, Yun YJ, Park CG, Lee DH, Cho YK, Park BJ, Joo SI, Kim EC, Hur YJ, Kim BJ, Kook YH (2007) Outbreak of Mycobacterium massiliense infection associated with intramuscular injections. J Clin Microbiol 45:3127–3130

    Article  PubMed  CAS  Google Scholar 

  29. Kim HY, Kim BJ, Kook Y, Yun YJ, Shin JH, Kim BJ, Kook YH (2010) Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 54:347–353

    Article  PubMed  CAS  Google Scholar 

  30. Adékambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Mycobacterium Reference Laboratory and Birmingham Reference Laboratory for identifying the isolates in this study by the Hain probe method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Harris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blauwendraat, C., Dixon, G.L.J., Hartley, J.C. et al. The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae . Eur J Clin Microbiol Infect Dis 31, 1847–1853 (2012). https://doi.org/10.1007/s10096-011-1510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1510-9

Keywords

Navigation