Skip to main content
Log in

Al x CrFeCoNi High-Entropy Alloys: Surface Modification by Electron Beam Bead-on-Plate Melting

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Two five-component Al x CrFeCoNi high-entropy alloys, x-0.6 and 0.8, were prepared by vacuum arc-melting. Electron beam surface re-melting was employed to modify the surface properties of the two high-entropy alloys. The effects of electron beam surface re-melting on the structure and mechanical properties of the alloys were investigated using scanning electron microscopy and the Vickers hardness test. Regions of Al0.6CrFeCoNi (P3 alloy) subjected to multi-pass electron beam surface re-melting showed an average value of 374 HV, an increase of 28% when compared to base metal values, while Al0.8CrFeCoNi (P2 alloy) welds exhibited a much higher increase to 530 HV, corresponding to a 34% increase relative to the values obtained with the base metals. In the P2 alloy subjected to multi-pass surface re-melting, significant temper softening caused by overlapping tracks was detected, in contrast to the hardening of the surface induced by a single-pass. It is noteworthy that the significant increase in hardness realized in the P2 multi-pass fusion zones resulted in a microstructure with a high tendency to crack. The increased hardness of that region subjected to electron beam surface re-melting for both alloys is likely associated with a superposition of several factors related to the high cooling rates of solidification in the electron beam re-melted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). doi:10.1002/adem.200300567

    Article  Google Scholar 

  2. J.W. Yeh, Physical Metallurgy of High-Entropy Alloys. J. Mater. 67, 2254–2261 (2015). doi:10.1007/s11837-015-1583-5

    Google Scholar 

  3. M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014). doi:10.1080/21663831.2014.912690

    Article  Google Scholar 

  4. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16, 494–525 (2014). doi:10.3390/e16010494

    Article  Google Scholar 

  5. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). doi:10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  6. F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013). doi:10.1016/j.actamat.2013.01.042

    Article  Google Scholar 

  7. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041–1–011241-6 (2015). doi:10.1103/PhysRevX.5.011041

    Google Scholar 

  8. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and deformed Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009). doi:10.1016/j.jallcom.2009.08.090

    Article  Google Scholar 

  9. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012). doi:10.1016/j.intermet.2012.03.005

    Article  Google Scholar 

  10. W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143–152 (2014). doi:10.1016/j.jallcom.2013.11.084

    Article  Google Scholar 

  11. A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212–215 (2013). doi:10.1016/j.ultramic.2012.12.015

    Article  Google Scholar 

  12. Y. Zhang, S.G. Ma, J.W. Qiao, Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification. Metall. Mater. Trans. A 43, 2625–2630 (2012). doi:10.1007/s11661-011-0981-8

    Article  Google Scholar 

  13. I. Voiculescu, V. Geantă, R. Ştefănoiu, D. Pătroi, H. Binchiciu, Influence of the chemical composition on the microstructure and microhardness of AlCrFeCoNi high entropy alloy. Rev Chim (Chem Rev) 64(12), 1441–1444 (2013)

    Google Scholar 

  14. R. Ştefănoiu, V. Geantă, I. Voiculescu, I. Csaki, N. Ghiban, Researches regarding the influence of chemical composition on the properties of Al x CrFeCoNi alloys. Rev Chim 65(7), 819–821 (2014). Cotată ISI Thomson Reuters

    Google Scholar 

  15. V. Geantă, I. Voiculescu, R. Ştefănoiu, D. Savastru, I. Csaki, D. Patroi, L. Leonat, Processing and characterization of advanced multi-element high entropy materials from AlCrFeCoNi system. Optoelectron. Adv. Mater. 7(11–12), 874–880 (2013)

    Google Scholar 

  16. G. Tang, F. Xu, G. Fan, X. Ma, L. Wang, Mechanisms of microstructure formations in M50 steel melted layer by high current pulsed electron beam. Nucl. Instrum. Methods Phys. Res. Sect. B 288, 1–5 (2012). doi:10.1016/j.nimb.2012.07.021

    Article  Google Scholar 

  17. Y. Hao, B. Gao, G.F. Tu, S.W. Li, S.Z. Hao, C. Dong, Surface modification of Al–20Si alloy by high current pulsed electron beam. Appl. Surf. Sci. 257, 3913–3919 (2011). doi:10.1016/j.apsusc.2010.11.118

    Article  Google Scholar 

  18. Y. Su, G. Li, L. Niu, S. Yang, J. Cai, Q. Guan, Microstructure modifications and associated corrosion improvements in GH4169 superalloy treated by high current pulsed electron beam. J. Nanomater. (2015). doi:10.1155/2015/876539

    Google Scholar 

  19. I. Voiculescu, V. Geanta, I.M. Vasile, R. Stefanoiu, M. Tonoiu, Characterisation of weld deposits using as filler metal a high-entropy alloy. J. Optoelectron. Adv. Mater. 15(7–8), 650–654 (2013)

    Google Scholar 

  20. Q.H. Li, T.M. Yue, Z.N. Guo, X. Lin, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on aisi 1045 steel by the electrospark process. Metall. Mater. Trans. A 44, 1767–1778 (2013). doi:10.1007/s11661-012-1535-4

    Article  Google Scholar 

  21. H. Zhang, Y. Pan, Y.Z. He, J.L. Wu, T.M. Yue, S. Guo, Application prospects and microstructural features in laser-induced rapidly solidified high-entropy alloys. J. Mater. (2014). doi:10.1007/s11837-014-1036-6

    Google Scholar 

  22. T.M. Yue, H. Xie, X. Lin, H. Yang, G. Meng, Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy 15, 2833–2845 (2013). doi:10.3390/e15072833

    Article  Google Scholar 

  23. J.L. Murphy, R.A. Huber, W.E. Lever, Joint preparation for electron beam welding thin aluminum alloy 5083. Weld. J. 69, 125s–132s (1990)

    Google Scholar 

  24. R. Singh, Weld cracking in ferrous alloys (Woodhead Publishing Limited, Cambridge, 2009)

    Book  Google Scholar 

  25. X. Cheng, J.W. Fisher, H.J. Prask, T. Gnaupel-Herold, B.T. Yen, S. Roy, Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures. Int. J. Fatigue 25, 1259–1269 (2003). doi:10.1016/j.ijfatigue.2003.08.020

    Article  Google Scholar 

  26. S. Kou, Welding Metallurgy, 2nd edn. (Wiley, Hoboken, 2003)

    Google Scholar 

  27. V.Y. Belen’kii, V.M. Yazovskikh, Control of electron beam welding using plasma phenomena in the molten pool region. Weld. Int. 11(7), 554–556 (1997). doi:10.1080/09507119709452013

    Article  Google Scholar 

  28. D.N. Trushnikov, V.Y. Belenki’y, G.M. Mladenov, N.S. Portnov, Secondary-emission signal for weld formation monitoring. Mater. Wiss. Werkst. 43(10), 892–897 (2012). doi:10.1002/mawe.201200933

    Article  Google Scholar 

  29. I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, Microstructural characterization of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. J. Alloys Compd. 648, 751–758 (2015). doi:10.1016/j.jallcom.2015.05.144

    Article  Google Scholar 

  30. J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys. Mater. Sci. Eng. A 633, 184–193 (2015). doi:10.1016/j.msea.2015.02.072

    Article  Google Scholar 

Download references

Acknowledgments

The research work was partially supported by the Romanian National Program for Research in the framework of Project No. PCCA 209/2012, “Composites structures resistant at dynamic loadings applied with high deformation speeds used in the field of collective protection – HEAMIL” and by Project No. PN-II-IN-DPST-2012-1-0066, “Excavator component reinforced with high-entropy alloys - HEATEETH,” to whom the authors are grateful. The authors thank I. Rosenthal, A. Gienko, D. Mugilyanski E. Millionshckik and R. Golan (BGU) and I. Benishti, S. Levi and E. Tiferet (NRCN), for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nahmany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahmany, M., Hooper, Z., Stern, A. et al. Al x CrFeCoNi High-Entropy Alloys: Surface Modification by Electron Beam Bead-on-Plate Melting. Metallogr. Microstruct. Anal. 5, 229–240 (2016). https://doi.org/10.1007/s13632-016-0276-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0276-y

Keywords

Navigation