Skip to main content

Advertisement

Log in

A high resolution map of French soil organic carbon

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Soil is a major carbon pool ruling the global C cycle and in climate change because soil carbon is a source and a sink of atmospheric CO2. Soil organic carbon also controls many beneficial properties such as fertility, aggregate stability and degradation of groundwater pollutants. Therefore mapping soil carbon at landscape scale is needed to define appropriate management that will favour higher soil quality. Actual soil carbon maps of France have a too coarse resolution, i.e. 8 and 12 km, to define efficient land management practices. Therefore, here, we model soil organic carbon in France at a resolution of 250 m. We study the impact of land use, soil type, climate and agro-management on soil organic carbon. We found that the total soil carbon stock in France is about 3.7 ± 1.3 Pg. Results also show that the precipitation pattern dominates the overall spatial distribution of soil carbon. Land use is the most important factor controlling organic carbon changes at landscape scale. Our high resolution national map of soil organic C will be useful to define land management practices that will improve soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADEME:

French Environment and Energy Management Agency

AGRESTE:

French Ministry of Agriculture Food and Fishery

AIC:

Akaike information criterion

AICc:

Corrected Akaike information criterion

BIC:

Bayesian information criterion

CEC:

Commission of the European Communities

dg:

geometric mean particle size

EEA:

European Environment Agency

FAO:

Food and Agriculture Organization of the United Nations

FYM:

Farm yard manure

GEFSOC:

Global Environment Facility Soil Organic Carbon

GIS:

Geographical Information System

Gt C:

Giga ton carbon

INRA:

French National Institute for Agricultural Research

Pg C:

Peta gram carbon

RMSE:

Root mean square error

RMQS:

French National Soil Survey (Réseau de Mesures de la Qualité des Sols)

RothC model:

Rothamsted carbon model

RPD:

Ratio of performance to deviation

R 2adj :

Adjusted coefficient of determination

SMU:

Soil mapping units

SOC:

Soil organic carbon

STU:

Soil topological units

References

  • ADEME (French Environment and Energy Management Agency) (2007) Bilan des flux de contaminants entrant sur les sols agricoles de France métropolitaine—final report: Bilan qualitatif de la contamination par les éléments tracés métalliques et les composés tracés organiques et application quantitative pour les éléments tracés métalliques

  • AGRESTE (Ministère de l’Alimentation, de l’Agriculture et de la Pêche) (2009) Chiffres et Données—Série Agriculture, 208, L’utilisation du territoire en 2008—Teruti-Lucas

    Google Scholar 

  • Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control AC 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical distribution in France. Soil Use Manag 17:7–11. doi:10.1111/j.1475-2743.2001.tb00002.x

    Article  Google Scholar 

  • Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby N, Grolleau E (2002) A new initiative in France: a multi-institutional soil quality monitoring network. Comptes rendus de l’Academie d’Agriculture de France 88:93–105

    Google Scholar 

  • Batjes NH (2002) Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use Manag 18:324–329. doi:10.1079/SUM2002138

    Article  Google Scholar 

  • Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA (2011) Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev 31:251–274. doi:10.1051/agro/2010007

    Article  CAS  Google Scholar 

  • Bohn HL (1976) Estimates of organic carbon in world soils. Soil Sci Soc Am J 40:468–470

    Article  Google Scholar 

  • Bolin B (1970) Carbon Cycle. Sci Am 223:124–132

    Article  Google Scholar 

  • CEC (1985) Soil Map of the European Communities at 1:1.000.000. CEC DG VI, Brussels-Luxembourg

    Google Scholar 

  • Chaney K, Swift RS (1984) The influence of organic-matter on aggregate stability in some British soils. J Soil Sci 35:223–230. doi:10.1111/j.1365-2389.1984.tb00278.x

    Article  CAS  Google Scholar 

  • Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486

    Article  CAS  Google Scholar 

  • De Ridder F, Pintelon R, Schoukens J, Gillikin DP (2005) Modified AIC and MDL model selection criteria for short data records. IEEE Trans Instrum Meas 54:144–150. doi:10.1109/TIM.2004.838132

    Article  Google Scholar 

  • EEA (2007) CLC2006 technical guidelines, Technical report No. 17/2007. European Environment Agency, Copenhagen

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, data mining, inference, and prediction, Springer Series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671. doi:10.1111/j.1365-2389.2005.00728.x

    Article  CAS  Google Scholar 

  • Kern JS (1994) Spatial patterns of soil organic carbon in the contiguous United States. Soil Sci Soc Am J 58:439–455

    Article  Google Scholar 

  • King D, Burill A, Daroussin J, Le Bas C, Tavernier R, Van Ranst E (1995) The EU soil geographical database. In: King D, Jones RJA, Thomasson AJ (eds) European Land Information Systems for Agro-environmental Monitoring, EUR 16232 EN. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Lashermes G, Nicolardot B, Parnaudeau V, Thuries L, Chaussod R, Guillotin ML, Lineres M, Mary B, Metzger L, Morvan T, Tricaud A, Villette C, Houot S (2009) Indicator of potential residual carbon in soils after exogenous organic matter application. Eur J Soil Sci 60:297–310. doi:10.1111/j.1365-2389.2008.01110.x

    Article  CAS  Google Scholar 

  • Ludwig B, Geisseler D, Michel K, Joergensen RG, Schulz E, Merbach I, Raupp J, Rauber R, Hu K, Niu L, Liu X (2011) Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron Sustain Dev 31:361–372. doi:10.1051/agro/2010030

    Article  Google Scholar 

  • Manrique LA, Jones CA (1991) Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J 55:476–481

    Article  CAS  Google Scholar 

  • Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8:1053–1065. doi:10.5194/bg-8-1053-2011

    Article  CAS  Google Scholar 

  • Meersmans J, De Ridder F, Canters F, De Baets S, Van Molle M (2008) A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 143:1–13. doi:10.1016/j.geoderma.2007.08.025

    Article  CAS  Google Scholar 

  • Meersmans J, Van Wesemael B, De Ridder F, Dotti MF, De Baets S, Van Molle M (2009) Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Glob Change Biol 15:2739–2750. doi:10.1111/j.1365-2486.2009.01855.x

    Article  Google Scholar 

  • Meersmans J, van Wesemael B, Goidts E, van Molle M, De Baets S, De Ridder F (2011) Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960–2006. Glob Change Biol 17:466–479. doi:10.1111/j.1365-2486.2010.02183.x

    Article  Google Scholar 

  • Meersmans J, Martin MP, De Ridder F, Lacarce E, Wetterlind J, De Baets S, Le Bas C, Louis BP, Orton TG, Bispo A, Arrouays, D (2012) A novel soil organic C model using climate, soil type and management data at the national scale (France). Agron Sustain Dev. doi:10.1007/s13593-012-0085-x

  • Milne E, Al Adamat R, Batjes NH, Bernoux M, Bhattacharyya T, Cerri CC, Cerri CEP, Coleman K, Easter M, Falloon P, Feller C, Gicheru P, Kamoni P, Killian K, Pal DK, Paustian K, Powlson DS, Rawajfih Z, Sessay M, Williams S, Wokabi S (2007) National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system. Agric Ecosyst Environ 122:3–12. doi:10.1016/j.agee.2007.01.002

    Article  CAS  Google Scholar 

  • Mishra U, Lal R, Slater B, Calhoun F, Liu D, Van Meirvenne M (2009) Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Sci Soc Am J 73:614–621. doi:10.2136/sssaj2007.0410

    Article  CAS  Google Scholar 

  • Morra L, Pagano L, Iovieno P, Baldanton A, Alfani A (2010) Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse condition. Agron Sustain Dev 30:701–709. doi:10.1051/agro/2009046

    Article  Google Scholar 

  • Olvera-Velona A, Benoit P, Barriuso E, Ortiz-Hernandez L (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sustain Dev 28:231–238. doi:10.1051/agro:2008009

    Article  CAS  Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils – significance and processes. Catena 23: 1-28. doi:10.1016/0341-8162(94)90050-7

  • Razafimbelo TM, Albrecht A, Oliver R, Chevallier T, Chapuis-Lardy L, Feller C (2008) Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res 98:140–149. doi:10.1016/j.still.2007.10.012

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167. doi:10.1016/S0167-1987(97)00038-X

    Article  Google Scholar 

  • Rusco E, Jones R, Bidoglio G (2001) Organic matter in the soils of Europe: present status and future trends, European Soil Bureau, Soil and Waste Unit, Institute for Environment and Sustainability. JRC Ispra, Institute, Joint Research Centre European Commission, Italy

    Google Scholar 

  • Saha D, Kukal SS, Sharma S (2011) Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil 339:457–470. doi:10.1007/s11104-010-0602-0

    Article  CAS  Google Scholar 

  • Stavi I, Lal R, Owens LB (2011) On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agron Sustain Dev 31:475–482. doi:10.1007/s13593-011-0006-4

    Article  Google Scholar 

  • Stevens A, van Wesemael B (2008) Soil organic carbon stock in the Belgian Ardennes as affected by afforestation and deforestation from 1868 to 2005. For Ecol Manag 256:1527–1539. doi:10.1016/j.foreco.2008.06.041

    Article  Google Scholar 

  • Tan ZX, Lal R, Smeck NE, Calhoun FG (2004) Relationships between surface soil organic carbon pool and site variables. Geoderma 121:187–195. doi:10.1016/j.geoderma.2003.11.003

    Article  CAS  Google Scholar 

  • Ungaro F, Staffilani F, Tarocco P (2010) Assessing and mapping topsoil organic carbon stocks at regional scale: a scorpan kriging approach conditional on soil map delineations and land use. Land Degrad Dev 21:565–581. doi:10.1002/ldr.998

    Article  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi:10.1126/science.1145724

    Article  PubMed  Google Scholar 

  • van Wesemael B, Paustian K, Meersmans J, Goidts E, Barancikova G, Easter M (2010) Agricultural management explains historic changes in regional soil C stocks. Proc Natl Acad Sci USA 107:14926–14930. doi:10.1073/pnas.1002592107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The RMQS was financed by the “Groupement d’Intérêt Scientifique Sol”. Jeroen Meersmans post-doctoral position was funded by the French Environment and Energy Management Agency (ADEME). We thank all the people involved in sampling and sample preparation and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Meersmans.

About this article

Cite this article

Meersmans, J., Martin, M.P., Lacarce, E. et al. A high resolution map of French soil organic carbon. Agron. Sustain. Dev. 32, 841–851 (2012). https://doi.org/10.1007/s13593-012-0086-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0086-9

Keywords

Navigation