Skip to main content
Log in

Analyses of genetic diversity and relationships in four Calanthe taxa native to Korea using AFLP markers

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

About 171 Calanthe species have been reported worldwide. However, only four species and two natural hybrids are known to grow naturally in South Korea. Classification studies of Calanthe orchids using molecular markers have been relatively limited. Therefore, the objectives of this study are to analyze the genetic diversity and relationships of four Calanthe taxa (101 accessions), including C. sieboldii (13 accessions), C. discolor (33), C. × bicolor (54), and C. aristulifera (1), native to South Korea and to identify the potential of each primer combination to discriminate each Calanthe accession using an AFLP technique. Thirty-two AFLP primer pairs produced a total of 2,764 bands, with an average of 86.4 bands per primer pair. Among all bands, 42.3% (1,354 bands), 51.6% (1,652), and 70.0% (2,240) were polymorphic in C. sieboldii, C. discolor, and C. × bicolor, respectively. Calanthe aristulifera was the most distant of the Calanthe taxa, and C. × bicolor, a natural hybrid of C. discolor × C. sieboldii, was more closely related to C. discolor (0.015 of genetic distance) than to C. sieboldii (0.022). Each Calanthe taxon with multiple accessions was divided into two or three groups. Comparisons of gene diversity, polymorphic information content, effective multiplex ratio, marker index, and resolving power proved that resolving power had the best discrimination potential for the 101 Calanthe accessions. These results will help to identify diverse accessions and to develop a breeding program of Calanthe orchids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ajmone Marsan, P., P. Castiglioni, F. Fusari, M. Kuiper, and M. Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219–227.

    Article  Google Scholar 

  • Bahraminejad, A., G. Mohammadi-Nejad, M.A. Kadir, and M.R.B. Yusop. 2012. Molecular diversity of cumin (Cuminum cyminum L.) using RAPD markers. Aust. J. Crop Sci. 6:194–199.

    CAS  Google Scholar 

  • Blears, M.J., S.A. De Grandis, H. Lee, and J.T. Trevors. 1998. Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21:99–114.

    Article  CAS  Google Scholar 

  • Cho, D.H., Y.W. Choi, J.S. Kang, Y.J. Lee, B.G. Son, I.S. Choi, Y.G. Lee, S.O. Jee, and K.-M. Kim. 2007. Morphological characteristics and genetic diversity of Calanthe species native to Korea. J. Life Sci. 17:312–317.

    Article  Google Scholar 

  • Cho, D.H., M.Y. Chung, S.O. Jee, C.K. Kim, J.D. Chung, and K.-M. Kim. 2010. Intraspecific morphological characteristics and genetic diversity of Korean Calanthe. Korean J. Plant Resour. 23:541–549.

    Google Scholar 

  • Cho, D.H., M.Y. Chung, S.O. Jee, C.K. Kim, J.D. Chung, and K.-M. Kim. 2009. Genetic analysis of flower color traits in Calanthe discolor, C. sieboldii, and variants using molecular linkage map. J. Life Sci. 19:1239–1244.

    Article  Google Scholar 

  • De Oliveira, E.J., V.B.O. Amorim, E.L.S. Matos, J.L. Costa, M. Da Silva Castellen, J.G. Pádua, and J.L.L. Dantas. 2010. Polymorphism of microsatellite markers in papaya (Carica papaya L.). Plant Mol. Biol. Rpt. 28:519–530.

    Article  Google Scholar 

  • Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

    Google Scholar 

  • Fernández, M.E., A.M. Figueiras, and C. Benito. 2002. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104:845–851.

    Article  PubMed  Google Scholar 

  • Gale, S. and C. Drinkell. 2007. 596. Calanthe arisanensis Orchidaceae. Curtis’s Bot. Mag. 24:206–210.

    Article  Google Scholar 

  • Hyun, M.-R., J.-Y. Choi, J.-N. Suh, I.-S. So, and J.-S. Lee. 1999a. Isozyme and Randomly Amplified Polymorphic DNA (RAPD) analysis for genetic relationship among Calanthe discolor, C. sieboldii, and C. bicolor native to Cheju Island. Korean J. Hort. Sci. Technol. 17:141–143.

    Google Scholar 

  • Hyun, M.-R., J.-Y. Choi, J.-N. Suh, I.-S. So, and J.-S. Lee. 1999b. Studies on distributions and morphological characteristics of Calanthe discolor, C. sieboldii, and C. bicolor native to Cheju Province. Kor. J. Hort. Sci. Technol. 17:497–499.

    Google Scholar 

  • Kabir, K.M.R. and Y.J. Park. 2011. Population structure of mungbean accessions collected from South and West Asia using SSR markers. Korean J. Breed. Sci. 43:14–22.

    Google Scholar 

  • Kim, S.H., W.-J. Kim, G.-J. Lee, H.-S. Song, D.S. Kim, J.-B. Kim, and S.-Y. Kang. 2009. Genetic relationship of Hibiscus syriacus L. clarified by AFLP and morphological evaluation. Hort. Environ. Biotechnol. 50:555–565.

    CAS  Google Scholar 

  • Kwon, S.-J., K.-B. Lim, M.-H. Lim, J.-Y. Park, J.-A. Kim, J.S. Kim, S.-S. Lee, B.-S. Park, and Y.-M. Jin. 2007. Molecular genetics of Brassicaceae based on AFLP display. Kor. J. Hort. Sci. Technol. 25:75–81.

    CAS  Google Scholar 

  • Leberg, P.L. 2002. Estimating allelic richness: Effects of sample size and bottlenecks. Mol. Ecol. 11:2445–2449.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G.-J., K.-S. Kim, J.S. Kim, J.H. Park, J.-B. Kim, D.S. Kim, and S.-Y. Kang. 2008a. A wide array of phenotypic components and their contributions to variations in Calanthe orchid landraces. Hort. Environ. Biotechnol. 49:418–426.

    Google Scholar 

  • Lee, J.-D., J.-K. Yu, Y.-H. Hwang, S. Blake, Y.-S. So, G.-J. Lee, H.T. Nguyen, and J. Grover Shannon. 2008b. Genetic diversity of wild soybean (Glycine soja Sieb. and Zucc.) accessions from South Korea and other countries. Crop Sci. 48:606–616.

    Google Scholar 

  • Lee, J.S. and B.H. Kwack. 1983a. Classification of horticultural cultivars on cultivated Calanthe discolor Lindle native to Korea. J. Kor. Soc. Hort. Sci. 24:144–148.

    Google Scholar 

  • Lee, J.S. and B.H. Kwack. 1983b. Classification of horticultural cultivars on cultivated Calanthe striata R. Br. in Korea. J. Kor. Soc. Hort. Sci. 24:62–67.

    Google Scholar 

  • Liu, K. and S.V. Muse. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, P.J., M.A. Saghai Maroof, G.R. Buss, and G.M. Huestis. 1996. Amplified fragment length polymorphism (AFLP) in soybean: Species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet. 93:392–401.

    Article  CAS  Google Scholar 

  • Park, J.M., S.S. Whang, S. So, P.O. Lim, H.-Y. Lee, and J.C. Koo. 2010. Identification of differentially expressed genes in flower buds of Calanthe discolor and C. sieboldii. J. Plant Biol. 53:24–31.

    Article  CAS  Google Scholar 

  • Prevost, A. and M.J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98:107–112.

    Article  CAS  Google Scholar 

  • Sathyanarayana, N., M. Leelambika, S. Mahesh, and M. Jaheer. 2011. AFLP assessment of genetic diversity among Indian Mucuna accessions. Physiol. Mol. Biol. Plants 17:171–180.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Varshney, R.K., K. Chabane, P.S. Hendre, R.K. Aggarwal, and A. Graner. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 173:638–649.

    Article  CAS  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Friters, J. Pot, J. Paleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Lee, J.S., Lee, GJ. et al. Analyses of genetic diversity and relationships in four Calanthe taxa native to Korea using AFLP markers. Hortic. Environ. Biotechnol. 54, 148–155 (2013). https://doi.org/10.1007/s13580-013-0168-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-013-0168-x

Additional key words

Navigation