Skip to main content
Log in

A simple process based on NH2- and CH3-terminated monolayers for low contact resistance and adherent Au electrode in bottom-contact OTFTs

  • 2015 LS Academic Award Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of −1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, and Z. Bao, Nat. Mater. 12, 665 (2013).

    Article  Google Scholar 

  2. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).

    Article  Google Scholar 

  3. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  Google Scholar 

  4. I. Pang, H. Kim, S. Kim, K. Jeong, H. S. Jung, C. J. Yu, H. Soh, and J. Lee, Org. Electron. 11, 338 (2010).

    Article  Google Scholar 

  5. Z. Bao, Adv. Mater. 12, 227 (2000).

    Article  Google Scholar 

  6. A. R. Murphy and J. M. J. Frechet, Chem. Rev. 107, 1066 (2007).

    Article  Google Scholar 

  7. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter. 20, 184011 (2008).

    Google Scholar 

  8. J. G. Park, R. Vasic, J. S. Brooks, and J. E. Anthony, J. Appl. Phys. 100, 044511 (2006).

    Article  Google Scholar 

  9. H. E. Katz, Z. Bao, and S. L. Gilat, Acc. Chem. Res. 34, 359 (2001).

    Article  Google Scholar 

  10. Y. Lee, M. Maniruzzaman, C. Lee, M. Lee, E.-G. Lee, and J. Lee, Electron. Mater. Lett. 9, 741 (2013).

    Article  Google Scholar 

  11. H. W. Lee, S. J. Lee, J. R. Koo, E. S. Cho, S. J. Kwon, W. Y. Kim, J. Park, and Y. K. Kim, Electron. Mater. Lett. 9, 865 (2013).

    Article  Google Scholar 

  12. M. S. Go, J.-M. Song, C. Kim, J. Lee, J. Kim, M. J. Lee, Electron. Mater. Lett. 11, 252 (2015).

    Article  Google Scholar 

  13. J.-H. Jung, W. Y. Kim, D.-K. Kim, J.-H. Kwon, H. C. Lee, J.-H. Bae, Electron. Mater. Lett. 11, 246 (2015).

    Article  Google Scholar 

  14. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).

    Article  Google Scholar 

  15. Y.-G Ha, J. D. Emery, M. J. Bedzyk, H. Usta, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 133, 10239 (2011).

    Article  Google Scholar 

  16. R. Abdur, K. Jeong, M. J. Lee, and J. Lee, Org. Electron. 14, 1142 (2013).

    Article  Google Scholar 

  17. I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).

    Article  Google Scholar 

  18. A. Kahn, N. Koch, and W. Gao, J. Polym. Sci. Part B: Polym. Phys. 41, 2529 (2003).

    Article  Google Scholar 

  19. K. Hong, J. W. Lee, S. Y. Yang, K. Shin, H. Jeon, S. H. Kim, C. Yang, and C. E. Park, Org. Electron. 9, 21 (2008).

    Article  Google Scholar 

  20. H.-Y. Chen, I.-W. Wu, C.-T. Chen, S.-W. Liu, and C.-I. Wu, Org. Electron. 13, 593 (2012).

    Article  Google Scholar 

  21. R. Abdur, Y. K. Lee, K. Jeong, H.-S. Nam, Y.-H. Kim, J. Kim, and J. Lee, Org. Electron. 26, 8 (2015).

    Article  Google Scholar 

  22. Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 99, 10252 (2002).

    Article  Google Scholar 

  23. H. Kim, K. Jeong, C.-J. Yu, H.-S. Nam, H. Soh, and J. Lee, Solid State Electron. 67, 70 (2012).

    Article  Google Scholar 

  24. P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, J. Appl. Phys. 91, 3010 (2002).

    Article  Google Scholar 

  25. B. Jaeckel, J. B. Sambur, and B. A. Parkinson, J. Appl. Phys. 103, 063719 (2008).

    Article  Google Scholar 

  26. M. Xu, M. Nakamura, M. Sakai, and K. Kudo, Adv. Mater. 19, 371 (2007).

    Article  Google Scholar 

  27. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004).

    Article  Google Scholar 

  28. Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron. Dev. Lett. 18, 606 (1997).

    Article  Google Scholar 

  29. M. L. Tang, T. Okamoto, and Z. Bao, J. Am. Chem. Soc. 128, 16002 (2006).

    Article  Google Scholar 

  30. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).

    Article  Google Scholar 

  31. O. Acton, M. Dubey, T. Weidner, K. M. O’Malley, T.-W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma, and A. K.-Y. Jen, Adv. Func. Mater. 21, 1476 (2011).

    Article  Google Scholar 

  32. D. J. Dunaway and R. L. McCarley, Langmuir 10, 3598 (1994).

    Article  Google Scholar 

  33. R. A. Hatton, M. R. Willis, M. A. Chesters, and D. Briggs, J. Mater. Chem. 13, 722 (2003).

    Article  Google Scholar 

  34. H. M. Stec, R. J. Williams, T. S. Jones, and R. A. Hatton, Adv. Func. Mater. 21, 1709 (2011).

    Article  Google Scholar 

  35. M.-H. Lin, C.-F. Chen, H.-W. Shiu, C.-H. Chen, and S. Gwo, J. Am. Chem. Soc. 131, 10984 (2009).

    Article  Google Scholar 

  36. S. Kim, T. W. Kwon, J. Y. Kim, H. Shin, J. G. Lee, and M. M. Sung, J. Korean Phys. Soc. 49, S736 (2006).

    Google Scholar 

  37. W.-K. Kim and J.-L. Lee, Appl. Phys. Lett. 88, 262102 (2006).

    Article  Google Scholar 

  38. C. Kim, B. Lee, H. J. Yang, H. M. Lee, J. G. Lee, and H. Shin, J. Korean Phys. Soc. 47, S417 (2005).

  39. W. B. Jensen, The Lewis Acid-Base Concepts: An Overview. John Wiley and Sons, New York (1980).

    Google Scholar 

  40. P. Silberzan, L. Leger, D. Ausserre, and J. J. Benattar, Langmuir 7, 1647 (1991).

    Article  Google Scholar 

  41. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Ianotta, and G. G. Malliaras, Chem. Mater. 16, 4497 (2004).

    Article  Google Scholar 

  42. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, J. Am. Chem. Soc. 130, 10556 (2008).

    Article  Google Scholar 

  43. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80, 2501 (1996).

    Article  Google Scholar 

  44. W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, Langmuir 21, 2260 (2005).

    Article  Google Scholar 

  45. X.-H. Zhang and B. Kippelen, J. Appl. Phys. 104, 104504 (2008).

    Article  Google Scholar 

  46. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 024509 (2006).

    Article  Google Scholar 

  47. J. Krüger, U. Bach, and M. Grätzel, Adv. Mater. 12, 447 (2000).

    Article  Google Scholar 

  48. V. Vogel and D. Möbius, J. Colloid Interface Sci. 126, 408 (1988).

    Article  Google Scholar 

  49. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegab Lee.

Additional information

Authors contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdur, R., Lim, J., Jeong, K. et al. A simple process based on NH2- and CH3-terminated monolayers for low contact resistance and adherent Au electrode in bottom-contact OTFTs. Electron. Mater. Lett. 12, 197–204 (2016). https://doi.org/10.1007/s13391-016-5445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5445-2

Keywords

Navigation