Skip to main content
Log in

Observation of irreversible current path in polymer dielectric using conductive atomic force microscope

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

During the measurement of the electrical properties of a metal-polymer-metal capacitor, it was found that the capacitor exhibited write-once-read-many-times (WORM) memory behavior, even though it was made of the dielectric polymer, polystyrene. The initial low conductance state changed to a high conductance state when a threshold voltage was applied, but this final state never reverted to the initial state. This phenomenon only appeared in sub-100-nm-thick films. To understand this phenomenon, conductive atomic force microscopy (CAFM) was used. The current distribution measured with CAFM showed an irreversible current path had formed near particles in the polymer film. For reproducibility, particles were intentionally inserted into the polymer film during the fabrication of metal-polymer-metal capacitors, and the same current mechanism was found. From these results, it is concluded that the purification and cleaning process of organic devices severely affects the device characteristics. In addition, particle-insertion appears to be a promising method for fabrication low-cost and air-stable WORM type memory for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kanwal and M. Chhowalla, Appl. Phys. Lett. 89, 203103 (2006).

    Article  Google Scholar 

  2. H. S. Majumdar, J. K. Baral, R. Osterbacka, O. Ikkala, and H. Stubb, Org. Electron. 6, 188 (2005).

    Article  Google Scholar 

  3. S. Paul, IEEE Transaction on Nanotechnology 6, 191 (2007).

    Article  Google Scholar 

  4. J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004).

    Article  Google Scholar 

  5. H.-T. Lin, Z. Pei, J.-R. Chen, G.-W. Hwang, J.-F. Fan, and Y.-J. Chan, IEEE Elec. Dev. Lett. 28, 951 (2007).

    Article  Google Scholar 

  6. H.-T. Lin, Z. Pei, and Y.-J. Chan, IEEE Elec. Dev. Lett. 28, 569 (2007).

    Article  Google Scholar 

  7. W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao, and G. Rao, Adv. Mater. 17, 2307 (2005).

    Article  Google Scholar 

  8. H. S. Majumdar, J. K. Baral, A. Laiho, J. Ruokolainen, O. Ikkala, and R. Osterbacka, Adv. Mater. 18, 2805 (2006).

    Article  Google Scholar 

  9. “Worm Memory Device and Process of Manufacturing the Same” in Patent Application Approval Process, http://www.highbeam.com/doc/1G1-381529885.html

  10. SanDisk WORM secure memory card, http://www.gizmag.com/sandisk-secure-memory-card/9642/

  11. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Prog. Polym. Sci. 33, 917 (2008).

    Article  Google Scholar 

  12. S. Moller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest, Nature 426, 166 (2003).

    Article  Google Scholar 

  13. E. Y. H. Teo, Q. D. Ling, Y. Song, Y. P. Tan, W. Wang, E. T. Kang, D. S. H. Chan, and C. Zhu, Org. Electron. 7, 173 (2006).

    Article  Google Scholar 

  14. X. Xu, R. A. Register, and S. R. Forrest, Appl. Phys. Lett. 89, 142109 (2006).

    Article  Google Scholar 

  15. M. Berggren, D. Nilsson, and N. D. Robinson, Nat. Mater. 6, 3 (2007).

    Article  Google Scholar 

  16. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Func. Mater. 15, 290 (2005).

    Article  Google Scholar 

  17. L. V. Gregor, Thin Solid Films 2, 235 (1968).

    Article  Google Scholar 

  18. H. S. Nalwa, Marcel Dekker, Inc, ISBN 0-8247-9468-0, Ch.1, p.37 (1995).

    Google Scholar 

  19. Polymer Database (PoLyInfo), http://polymer.nims.go.jp/index_en.html

  20. T. Furukawa, T. Nakajima, and Y. Takahashi, IEEE Trans. Diel. Elec. Ins. 13, 1120 (2006).

    Google Scholar 

  21. M. A. Lampert, A. Many, and P. Mark, Phys. Rev. 135, A1444 (1964).

    Article  Google Scholar 

  22. J. Y. Son and Y.-H. Shin, Appl. Phys. Lett. 92, 222106 (2008).

    Article  Google Scholar 

  23. A. E. Rodriguez, W. L. Morgan, K. J. Touryan, W. M. Moeny, and T. H. Martin, J. Appl. Phys. 70, 2015 (1991).

    Article  Google Scholar 

  24. R.K. Goyal, K.A. Rokade, A.S. Kapadia, B. S. Selukar, and B. Garnaik, Electron. Mater. Lett. 9, 95 (2013).

    Article  Google Scholar 

  25. H.-W. Cui, D.-S. Li, and Q. Fan, Electron. Mater. Lett. 9, 299 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyuk Bae.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JH., Kim, W.Y., Kim, DK. et al. Observation of irreversible current path in polymer dielectric using conductive atomic force microscope. Electron. Mater. Lett. 11, 246–251 (2015). https://doi.org/10.1007/s13391-014-4241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4241-0

Keywords

Navigation