Skip to main content
Log in

An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Salinity is one of the most wide spread abiotic stresses affecting agricultural productivity, with an impact on more than 800 million hectares worldwide. A promising solution for the recovery of saline soils encompasses the use of actinorhizal plants, a group of perennial dicotyledonous angiosperms including species highly resilient to extreme environmental conditions. These plants are able to establish root-nodule symbiosis with N2-fixing actinobacteria of the genus Frankia. In this review, we discuss the main physiological and biochemical mechanisms underlying salt tolerance in the model Casuarina glauca supplemented with chemical nitrogen or obtaining it from symbiotic Frankia. In the first part, an overview of the impact of increasing NaCl concentrations in photosynthesis, antioxidative system and membrane integrity is presented. The second part addresses the effect of salt stress in the symbiosis between C. glauca and Frankia strain Thr. Preliminary results from analyses of the branchlets proteome and nodule metabolome are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis - from molecular mechanisms to the field. BIOS Science Publishers Ltd, UK, pp. 129–142

    Google Scholar 

  • Batista-Santos P, Duro N, Rodrigues AP, Semedo JN, Alves P, da Costa M, Graça I, Pais IP, Scotti-Campos P, Lidon FC, Leitão AE, Pawlowski K, Ribeiro-Barros AI, Ramalho JC (2015) Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Cramer VA, Schmidt S, Stewart GR, Thorburn PJ (2002) Can the nitrogenous composition of xylem sap be used to assess salinity stress in Casuarina glauca? Tree Physiol 22:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Diouf D, Svistoonoff S, Kanea A, Noba K, Franche C, Bogusz D, Duponnois R (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manag 128:204–209

    Article  CAS  Google Scholar 

  • Duro N, Batista-Santos P, Maia R, da Costa M, Castro IV, Ramos M, Ramalho JC, Pawlowski K, Máguas C, Ribeiro-Barros A (2016) The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N2-fixing Frankia bacteria based on the analysis of nitrogen and carbon metabolism. Plant Soil 398:327–337

  • Fortunato A, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 67:333–342

    Article  Google Scholar 

  • Foyer CH (2002) The contribution of photosynthetic oxygen metabolism to oxidative stress in plants. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Taylor & Francis, UK, pp. 33–68

    Google Scholar 

  • Ganguli N, Kennedy I (2013) Indigenous actinorhizal plants of Australia. J Biosci 38:749–759

    Article  PubMed  Google Scholar 

  • He XH, Critchley C (2008) Frankia nodulation, mycorrhization and interactions between Frankia and mycorrhizal fungi in casuarina plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer-Verlap GmbH, Germany, pp. 767–781

    Chapter  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang S-B, Cao K-F (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol 52:297–305

    Article  CAS  PubMed  Google Scholar 

  • Jaoudé RA, De Dato G, Palmegiani M, De Angelis P (2013) Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret. Plant Biol 15:109–117

    Article  PubMed  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New flux parameters for the determination of QA redox state and excitation fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Boguz D, Pawlowski K (2000) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homologue of Alnus glutinosa ag12. Mol Plant-Microbe Interact 13:113–117

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell Publishing, UK, pp. 250–267

    Google Scholar 

  • McNally SF, Hirel B (1983) Glutamine synthetase isoforms in higher plants. Physiol Veg 21:761–774

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato A, Lidon FC (2014a) Moderate water stress causes differential stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol 16:133–146

    Article  CAS  PubMed  Google Scholar 

  • Ramalho JC, DaMatta FM, Rodrigues AP, Scotti-Campos P, Pais I, Batista-Santos P, Partelli FL, Ribeiro A, Lidon FC, Leitão AE (2014b) Cold impact and acclimation response of Coffea spp. plants. Theor Exp Plant Physiol 26:5–18

    Article  CAS  Google Scholar 

  • Scotti-Camposa P, Duro N, da Costa M, Pais IP, Rodrigues AP, Batista-Santos P, Semedo JN, Leitão AE, Lidon FC, Pawlowski K, Ramalho JC, Ribeiro-Barros AI (2016) The role of oxidative stress and membrane integrity in salt-induced responses of Casuarina glauca in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. J Plant Physiol (in review)

  • Sieciechowicz KA, Joy KW, Ireland RJ (1988) Diurnal changes in asparaginase activity in pea leaves: I. The requirement for light for increased activity. J Exp Bot 39:695–706

    Article  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell Publishing, UK, pp. 53–86

    Chapter  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cryoprotectants in high osmolarity and other stresses. J Exp Bot 208:2819–2830

    Article  CAS  Google Scholar 

  • Zhong C, Zhang Y (2003) Introduction and management of Casuarina tree species in China. Chin For Sci Technol 17:3–5

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (FCT) under the scope of the project PTDC/AGR-FOR/4218/2012 (A.I. Ribeiro-Barros), grant SFRH/BPD/78619/2011 (P. Batista-Santos), FCT Investigator Program IF/00376/2012/CP0165/CT0003 (C. António), ITQB research unit GREEN-it “Bioresources for sustainability” (UID/Multi/04551/2013), and grant PD/BD/113475/2015 (T.F. Jorge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Ribeiro-Barros.

Additional information

Presented at the 18th International Meeting on Frankia and Actinorhizal Plants (ACTINO2015), August 24–27, 2015, Montpellier, France

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro-Barros, A.I., da Costa, M., Duro, N. et al. An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis 70, 111–116 (2016). https://doi.org/10.1007/s13199-016-0386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0386-y

Keywords

Navigation