Skip to main content

Advertisement

Log in

Cold impact and acclimation response of Coffea spp. plants

  • Original Paper
  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Climate changes implicate an increase in climate instability and the occurrence of extreme temperature in the environment. In this context, the differential triggering of cold tolerance mechanisms among coffee plants, highlighting the existence of important genetic variability, is of up most importance to be exploited in genotype screening and breeding programs. This review deals with the identification and triggering of acclimation mechanisms that shield key functions and structures of photosynthesis, with a particular emphasis on experiments under environmental controlled conditions. These mechanisms allow plants to perform metabolic and structural adjustments, particularly under conditions of a gradual cold exposure, simulating the effects happening in the field under cold periods. Detailed attention is given to the strengthening of the antioxidative system and to the dynamics of the lipid matrix components in chloroplast membranes, since they were found to constitute crucial traits to an effective long-term acclimation and, therefore, to guarantee the economic sustainability of this important tropical cash crop, particularly in cultivation areas prone to the occurrence of low positive temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amax :

Photosynthetic capacity

APX:

Ascorbate peroxidase

C16:0:

Palmitic acid

C16:1t :

3-trans-Hexadecenoic acid

C18:0:

Stearic acid

C18:1:

Oleic acid

C18:2:

Linoleic acid

C18:3:

Linolenic acid

Chl:

Chlorophyll

3Chl*:

Triplet state of Chl

CGA:

Chlorogenic acid

CQA:

Caffeoylquinic acid

Ci :

Internal CO2 concentration

Cu/Zn–SOD:

Cu/Zn–superoxide dismutase

Cyt:

Cytochrome

DBI:

Double bond index

DGDG:

Digalactosyldiacylglycerol

DHAR:

Dehydroascorbate reductase

FA:

Fatty acid

ϕe :

Estimate of the quantum yield of photosynthetic non-cyclic electron transport

Fv/Fm :

Maximal photochemical efficiency of PS II

Fv′/Fm′:

Photochemical efficiency of PS II under photosynthetic steady-state conditions

GL:

Galactolipid

GRed:

Glutathione reductase

gs :

Stomatal conductance to water vapour

H2O2 :

Hydrogen peroxide

LHCP:

Light harvesting complex proteins

MDH:

Malate dehydrogenase

MDHAR:

Monodehydroascorbate reductase

MGDG:

Monogalactosyldiacylglycerol

NPQ:

Non-photochemical quenching

1O2 :

Singlet oxygen

O •−2 :

Superoxide anion radical

OH:

Hydroxyl radical

qP :

Photochemical quenching

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PG:

Phosphatidylglycerol

PK:

Pyruvate kinase

PI:

Phosphatidylinositol

PL:

Phospholipid

Pn :

Net photosynthetic rate

PQ:

Plastoquinone

PSI and II:

Photosystems I and II

ROS:

Reactive oxygen species

RuBisCo:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TFA:

Total fatty acids

References

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Queiroz CS, Magalhães AC (1997) Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochim Biophys Acta 1323:75–84

    Article  CAS  PubMed  Google Scholar 

  • Amaral JAT, DaMatta FM, Rena AB (2001) Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Braz J Plant Physiol 13:66–74

    CAS  Google Scholar 

  • Amaral JAT, Rena AB, Amaral JFT (2006) Crescimento vegetativo sazonal do cafeeiro e sua relação com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesquisa Agropecuária Brasileira 41:377–384

    Article  Google Scholar 

  • Aphalo PJ, Lahti M, Lehto T, Repo T, Rummukainen A, Mannerkoski H, Finér L (2006) Responses of silver birch saplings to low soil temperature. Silva Fennica 40:429–442

    Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. BIOS Scientific Publishers Ltd., Oxford, pp 129–142

    Google Scholar 

  • Assad ED, Pinto HS, Zullo J Jr, Ávila AMH (2004) Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira 39:1057–1064

    Article  Google Scholar 

  • Barros RS, Maestri M (1974) Influência dos fatores climáticos sobre a periodicidade de crescimento vegetativo do café (Coffea arabica L.). Revista Ceres 21:268–279

    Google Scholar 

  • Barros RS, Mota JW, DaMatta FM, Maestri M (1997) Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance. Field Crops Res 54:65–72

    Article  Google Scholar 

  • Batista-Santos P, Lidon FC, Fortunato A, Leitão AE, Lopes E, Partelli F, Ribeiro AI, Ramalho JC (2011) The impact of cold on photosynthesis in genotypes of Coffea spp.—photosystem sensitivity, photoprotective mechanisms and gene expression. J Plant Physiol 168:792–806

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Wierer R, Hatheway WH, Larcher W (1985) Photosynthesis of Coffea arabica after chilling. Physiol Plant 64:449–454

    Article  CAS  Google Scholar 

  • Bauer H, Comploj A, Bodner M (1990) Susceptibility to chilling of some Central-African cultivars of Coffea arabica. Field Crops Res 24:119–129

    Article  Google Scholar 

  • Bicho NC, Oliveira JFS, Lidon FC, Ramalho JC, Leitão AE (2011) O café: origens, produção, processamento e definição de qualidade. Escolar Editora, Lisbon, p 171. ISBN 978-972-592-322-1

  • Bohn M, Lüthje S, Sperling P, Heinz E, Dörffling K (2007) Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J Plant Physiol 164:146–156

    Article  CAS  PubMed  Google Scholar 

  • Camargo AP (1985) O clima e a cafeicultura no Brasil. Informe Agropecuário, Belo Horizonte 11(126):13–26

    Google Scholar 

  • Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  • Cavatte PC, Oliveira AAG, Morais LE, Martins SCV, Sanglard LMVP, DaMatta FM (2012) Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis. Physiol Plant 114:111–122

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Coste R (1992) Coffee: the plant and the product. MacMillan, London, p 328

    Google Scholar 

  • DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114

    Article  Google Scholar 

  • DaMatta FM, Ramalho JC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • DaMatta FM, Maestri M, Mosquim PR, Barros RS (1997) Photosynthesis in coffee (Coffea arabica and C. canephora) as affected by winter and summer conditions. Plant Sci 128:43–50

    Article  CAS  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512

    Article  Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11):e47981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dias AS, Barreiro MG, Campos PS, Ramalho JC, Lidon FC (2010) Wheat celular thermotolerance under heat stress. J Agron Crop Sci 196(2):100–108

    Article  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (1997) Endochitinase and -1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    Article  CAS  PubMed  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Fortunato A, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gao J–J, Li T, Yu X-C (2009) Gene expression and activities of SOD in cucumber seedlings were related with concentrations of Mn2+, Cu2+, or Zn2+ under low temperature stress. Agric Sci China 8:678–684

    Article  CAS  Google Scholar 

  • Gay C, Estrada F, Conde C, Eakin H, Villers L (2006) Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico. Clim Change 79:259–288

    Article  Google Scholar 

  • Gombos Z, Murata N (1998) Genetic engineering of the unsaturation of membrane glycerolipid: effects on the ability of the photosynthetic machinery to tolerate temperature stress. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 249–262

    Google Scholar 

  • Gorsuch PA, Pandey S, Atkin OK (2010) Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming? Plant Cell Environ 33:1124–1137

    Article  PubMed  Google Scholar 

  • Goulao LF, Fortunato AS, Ramalho JC (2012) Selection of reference genes for normalizing quantitative real-time PCR gene expression data with multiple variables in Coffea spp. Plant Mol Biol Rep 30:741–759

    Article  CAS  Google Scholar 

  • Grace SC (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 141–168

    Google Scholar 

  • Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NPA (2005) Temperature and light modulate the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non-photochemical quenching. Plant Cell Physiol 46:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL (1997) Plant lipid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 237–271

    Chapter  Google Scholar 

  • Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 287–302

    Chapter  Google Scholar 

  • Hideg E, Kós PB, Vass I (2007) Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiol Plant 131:33–40

    Article  CAS  PubMed  Google Scholar 

  • Iba I (2002) Acclimation response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • International Coffee Organization (ICO) (2013) Statistics. Disponível em. http://www.ico.org/trade_statistics.asp. Accessed 7 Oct 2013

  • Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol 107:1177–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Larcher W (1981) Effects of low temperature stress and frost injury on plant productivity. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 253–269

    Chapter  Google Scholar 

  • Leshem Y (1992) Plant membranes: a biophysical approach to structure, development and senescence. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Libardi VCM, Amaral JAT, Amaral JFT (1998) Crescimento vegetativo sazonal do cafeeiro (Coffea canephora Pierre var. Conilon) no sul do Estado do Espírito Santo. Revista Brasileira de Agrometeorologia 6:23–28

    Google Scholar 

  • Lidon FC, Henriques FS (1993) Oxygen-metabolism in higher plant chloroplasts. Photosynthetica 29(2):249–279

    CAS  Google Scholar 

  • Lidon FC, Loureiro AS, Vieira DE, Bilho EA, Nobre P, Costa R (2001a) Photoinhibition in chilling stressed wheat and maize. Photosynthetica 39(2):161–166

    Article  CAS  Google Scholar 

  • Lidon FC, Ribeiro G, Santana H, Marques H, Correia K, Gouveia S (2001b) Photoinhibition in chilling stressed Leguminosae: comparison of Vicia fava and Pisum sativum. Photosynthetica 39(1):17–22

    Article  CAS  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro AH, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 250–267

    Google Scholar 

  • Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbelt S, Ramos HJO, Montagnon C, Vieira LGE, Leroy T, Pot D, Silva VA, Rodrigues GC, Andrade AC (2011) RBCS1 expression in coffee: coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marré WB (2012) Crescimento vegetativo e acúmulo de nutrientes em diferentes genótipos do cafeeiro Conilon. Universidade Federal do Espírito Santo, São Mateus

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 889. ISBN 0-12-473542-6

  • Matiello JB (1998) Café Conillon: Como Plantar, Tratar, Colher, Preparar e Vender. MM Produções Gráficas, Rio de Janeiro

  • Mills RF, Doherty ML, López-Marqués RL, Weimar T, Dupree P, Palmgren MG, Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol 146:116–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mondego JM, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GG, Pereira LF, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  PubMed  Google Scholar 

  • Murata N, Siegenthaler P-A (1998) Lipids in photosynthesis: an overview. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci M (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142

    Article  CAS  Google Scholar 

  • Nazareno RB, Oliveira CAS, Sanzonowicz C, Sampaio JBR, Silva JCP, Guerra AF (2003) Crescimento inicial do cafeeiro Rubi em respostas a doses de nitrogênio fósforo e potássio e a regime hídricos. Pesquisa Agropecuária Brasileira 38:903–910

    Article  Google Scholar 

  • Oliveira JG, Alves PLCA, Magalhães AC (2002) The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings. The proactive action of chloroplastid pigments. Braz J Plant Physiol 14:95–104

    Google Scholar 

  • Öquist G (1982) Seasonally induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus silvestris. A correlation between the level of unsaturation of monogalatosyldiglyceride and the rate of electron transport. Plant Physiol 69:869–875

    Article  PubMed Central  PubMed  Google Scholar 

  • Partelli FL, Vieira HD, Viana AP, Batista-Santos P, Leitão AE, Ramalho JC (2009) Low temperature impact on photosynthetic parameters in coffee genotypes. Pesquisa Agropecuária Brasileira 44:1404–1415

    Article  Google Scholar 

  • Partelli FL, Vieira HD, Silva MG, Ramalho JC (2010) Seasonal vegetative growth of different age branches of Conilon coffee tree. Semina: Ciências Agrárias 31:619–626

    Google Scholar 

  • Partelli FL, Batista-Santos P, Scotti-Campos P, Pais IP, Quantin VL, Vieira HD, Ramalho JC (2011) Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. Environ Exp Bot 74:194–204

    Article  CAS  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinheiro AH, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314

    Article  CAS  Google Scholar 

  • Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 167:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  • Queiroz CGS, Mares-Guia ML, Magalhães AC (2000) Microcalorimetric evaluation of metabolic heat rates in coffee (Coffea arabica L.) roots of seedlings subjected to chilling stress. Thermochim Acta 351:33–37

    Article  CAS  Google Scholar 

  • Ramalho JC, Pons T, Groeneveld H, Nunes MA (1997) Photosynthetic responses of Coffea arabica L. leaves to a short-term high light exposure in relation to N availability. Physiol Plant 101:229–239

    Article  CAS  Google Scholar 

  • Ramalho JC, Campos PS, Teixeira M, Nunes MA (1998) Nitrogen dependent changes in antioxidant systems and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135:115–124

    Article  CAS  Google Scholar 

  • Ramalho JC, Campos PS, Quartin VL, Silva MJ, Nunes MA (1999) High irradiance impairments on electron transport, ribulose-1,5-bisphosphate carboxylase/oxygenase and N assimilation as function of N availability in Coffea arabica L. plants. J Plant Physiol 154:319–326

    Article  CAS  Google Scholar 

  • Ramalho JC, Pons T, Groeneveld H, Azinheira HG, Nunes MA (2000) Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: role of xanthophylls, quenching mechanisms and nitrogen nutrition. Aust J Plant Physiol 27:43–51

    CAS  Google Scholar 

  • Ramalho JC, Marques NC, Semedo JN, Matos MC, Quartin VL (2002) Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol 4:112–120

    Article  CAS  Google Scholar 

  • Ramalho JC, Quartin V, Leitão AE, Campos PS, Carelli ML, Fahl JI, Nunes MA (2003) Cold acclimation ability of photosynthesis among species of the tropical Coffea genus. Plant Biol 5:631–641

    Article  CAS  Google Scholar 

  • Ramalho JC, Fortunato AS, Goulao LF, Lidon FC (2013a) Cold-induced changes in mineral content in Coffea spp. leaves: identification of descriptors for tolerance assessment. Biol Plant 57(3):495–506

    Article  CAS  Google Scholar 

  • Ramalho JC, Rodrigues AP, Semedo JN, Pais I, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos I, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM (2013b) Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLOS ONE. 8(12):e82712. doi:10.1371/journal.pone.0082712

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Rena AB (2000) Consequências fisiológicas das baixas temperaturas no cafeeiro. Circular Técnica. Lavras: EPAMIG/CRSM, n. 99

  • Routaboul JM, Fischer S, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperature. Plant Physiol 124:1697–1705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki C, Vårum KM, Itoh Y, Tamoi M, Fukamizo T (2006) Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Scotti-Campos P, Pais IP, Partelli FL, Batista-Santos P, Ramalho JC (2014) Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. J Plant Physiol 171:243–249

    Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler PA, Trémolières A (1998) Role of acyl lipids in the function of photosyntheticmembranes in higher plants. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 145–173

    Chapter  Google Scholar 

  • Silva EA, DaMatta FM, Ducatti C, Regazzi AJ, Barros RS (2004) Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Res 89:349–357

    Article  Google Scholar 

  • Smirnoff N (1995) Metabolic flexibility in relation to environment. In: Smirnoff N (ed) Environment and plant metabolism. Flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 1–16

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 1–24

    Chapter  Google Scholar 

  • Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2007) The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plant 131:89–105

    Article  CAS  PubMed  Google Scholar 

  • Torres-Franklin M-L, Gigon A, Melo DF, Zuily-Fodil Y, Pham-Thi A-T (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol Plant 131:201–210

    CAS  PubMed  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayan P, Routaboul J-M, Okada J (1998) A genetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 263–285

    Chapter  Google Scholar 

  • Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H (2006a) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Li W, Li M, Welti R (2006b) Profiling lipid changes in response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  • Webb MS, Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060:133–158

    Article  CAS  Google Scholar 

  • Willson KC (1999) Coffee, cocoa and tea. CAB International, Wallingford

    Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zhu S-Q, Zhao H, Liang J-S, Ji B-H, Jiao D-M (2008) Relationships between phosphatidylglycerol molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition in rice. J Integr Plant Biol 50:194–202

    Article  CAS  PubMed  Google Scholar 

  • Zullo J, Pinto HS, Assad ED, Ávila AMH (2011) Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109:535–548

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank E. Lopes and I. Palos (IICT) for technical support. This work was supported by Portuguese National Funds of Fundação para a Ciência e a Tecnologia, through the Grant SFRH/BPD/78619/2011 (P. Batista-Santos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Ramalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalho, J.C., DaMatta, F.M., Rodrigues, A.P. et al. Cold impact and acclimation response of Coffea spp. plants. Theor. Exp. Plant Physiol 26, 5–18 (2014). https://doi.org/10.1007/s40626-014-0001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-014-0001-7

Keywords

Navigation