Skip to main content

Salt Stress Tolerance in Casuarina glauca and Its Relation with Nitrogen-Fixing Frankia Bacteria

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

Salinity is one of the most widespread abiotic stresses. It is estimated that salt stress will cause the loss of more than 50 % of arable land by the year 2050. A promising solution for the recovery of saline soils encompasses the use of actinorhizal plants, a group of perennial dicotyledonous angiosperms highly resilient to extreme environmental conditions. These plants are also able to establish a root nodule symbiosis with N2-fixing actinobacteria of the genus Frankia . Casuarina glauca , the model actinorhizal species, tolerates NaCl concentrations above seawater levels. Such ability seems to be innate and independent of the symbiotic relationship with N2-fixing Frankia. In this work, we present a mini review of the basic mechanisms underlying salt tolerance in C. glauca focusing on the impact of salt on the photosynthesis, redox status, and membrane integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allakhverdiev SI, Kinoshita M, Inaba M et al (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus. Plant Physiol 125:1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amor FM, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63:55–62

    Article  Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis—from molecular mechanisms to the field. BIOS Sci Pub, Oxford, pp 129–142

    Google Scholar 

  • Batista-Santos P, Duro N, Rodrigues AP et al (2015) Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos PS, Quartin VL, Ramalho JC et al (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  • Carter JL, Colmer TD, Veneklaas EJ (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–133

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals Bot 103:551–560

    Article  CAS  Google Scholar 

  • Clemens J, Campbell LC, Nurisjah S (1983) Germination, growth and mineral ion concentrations of Casuarina species under saline conditions. Aust J Bot 31:1–9

    Article  CAS  Google Scholar 

  • Debez A, Saadaoui D, Ramani B et al (2006) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    Article  CAS  Google Scholar 

  • Diagne N, Diouf D, Svistoonoff S et al (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manage 128:204–209

    Article  CAS  PubMed  Google Scholar 

  • Dias AS, Barreiro MG, Campos PS et al (2010) Wheat cellular membrane thermotolerance under heat stress. J Agron Crop Sci 196:100–108

    Article  CAS  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in tropics and subtropics. In: Schwintzer CR, Tjepkma JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, San Diego, pp 317–342

    Google Scholar 

  • Duro N, Batista-Santos P, Maia R et al (2016) The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N2-fixing Frankia bacteria based on the analysis of nitrogen and carbon metabolism. Plant Soil 398:327–337

    Google Scholar 

  • El-Lakany MH, Luard EJ (1982) Comparative salt tolerance of selected Casuarina species. Aust For Res 13:11–20

    Google Scholar 

  • Ellouze C, Takahashi M, Wittung P et al (1995) Elongation of helical pitch of RecA filament upon ATP and ADP binding evidenced from small angle neutron scattering data. EUK J Biochem 233:579–583

    Article  CAS  Google Scholar 

  • Fortunato A, Lidon FC, Batista-Santos P et al (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Hameed S, Malik KA (1999) Frankia and Rhizobium strains as inoculum for fast growing trees in saline environment. Pak J Bot 31:173–182

    Google Scholar 

  • Huang B (2006) Cellular membranes in stress sensing and regulation of plant adaptation to abiotic stresses. In: Huang B (ed) Plant environment interactions, 3rd edn. CRC Press, New York, pp 1–25

    Chapter  Google Scholar 

  • Jaoudé RA, De Dato G, Palmegiani M et al (2013) Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret. Plant Biol 15:109–117

    Article  PubMed  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A et al (1997) Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield, growth and yield. Agric Water Manag 34:57–69

    Article  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol 1:1–29

    Google Scholar 

  • Kuiper PJC (1984) Functioning of plant cell membrane under saline conditions: membrane lipid composition and ATPase. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 77–91

    Google Scholar 

  • Leshem Y (1987) Membrane phospholipid catabolism and Ca2+ activity in control of senescence. Physiol Plant 69:551–559

    Article  CAS  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell Publishing, Oxford, pp 250–267

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  CAS  Google Scholar 

  • Matos MC, Campos PS, Passarinho JA et al (2010) Drought effect on photosynthetic activity, osmolyte accumulation and membrane integrity of two Cicer arietinum genotypes. Photosynthetica 48:303–312

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681

    CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Partelli FL, Batista-Santos P, Campos PS et al (2011) Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea sp. Environ Exp Bot 74:194–204

    Article  CAS  Google Scholar 

  • Ramalho JC, Campos PS, Teixeira M et al (1998) Nitrogen dependent changes in antioxidant systems and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135:115–124

    Article  CAS  Google Scholar 

  • Redondo-Gomez S, Mateos-Naranjo E, Davy AJ et al (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro A, Graça I, Pawlosky C et al (2011) Actinorhizal plant defence-related genes in response to symbiotic Frankia. Funct Plant Biol 38:639–644

    Article  Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions-review. Folia Microbiol Prague 56:1–9

    Article  CAS  Google Scholar 

  • Scotti-Campos P, Pham-Thi AT, Semedo JN et al (2013) Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emir J Food Agric 25:1002–1013

    Article  Google Scholar 

  • Scotti-Campos P, Pais I, Partelli FL et al (2014) Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. J Plant Physiol 171:243–249

    Article  CAS  PubMed  Google Scholar 

  • Scotti-Campos P, Duro N, da Costa M et al (2016) Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. J Plant Physiol 196:60–69

    Google Scholar 

  • Seeman JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of salt-sensitive species, Phaseolus vulgaris (L). Planta 164:151–162

    Article  Google Scholar 

  • Shalata A, Mittova V, Volokita M et al (2001) Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 122:487–494

    Article  Google Scholar 

  • Sivakumar P, Sharmila P, Pardha Saradhi P (2000) Proline alleviates salt-stress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochem Biophys Res Commun 279:512–515

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1995) Metabolic flexibility in relation to environment. In: Smirnoff N (ed) Environment and plant metabolism. Flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 1–16

    Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23

    Article  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Van Groenigen JW, Van Kessel C (2002) Salinity-induced patterns of natural abundance carbon-13 and nitrogen-15 in plant and soil. Soil Sci Soc Am J 66:489–498

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Zhang Y, Chen Y et al (2010) Casuarina research in China. Symbiosis 50:107–114

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia under the scope of the project PTDC/AGR-FOR/4218/2012 and grant SFRH/BPD/78619/2011 (P. Batista-Santos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Ribeiro-Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Duro, N. et al. (2016). Salt Stress Tolerance in Casuarina glauca and Its Relation with Nitrogen-Fixing Frankia Bacteria. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_13

Download citation

Publish with us

Policies and ethics