Skip to main content
Log in

Pair-approximation analyses of evolutionarily stable strategies for flowering time in clonal monocarpic plants

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Clonal plants can employ two distinct reproductive strategies, clonal and sexual reproduction. Bamboos are monocarpic clonal plants that flower after a long-term clonal reproduction, and then die after seed production. To explore the effect of spatial structure formed through clonal reproduction on the evolution of such long flowering intervals, we developed a model for population growth of clonal plants on a regular lattice. We applied the pair-approximation that enables us to obtain a closed form of the dynamics. We derived the condition that an infinitely long flowering interval (a pure clonal strategy) or annual flowering strategy became an evolutionarily stable strategy. We demonstrate that localized dispersal broadens the region in which finite flowering interval evolves. Our finding highlights the importance to take into account the spatial structure on the studies of life history strategy in clonal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Janzen, D.H.: Why bamboos wait so long to flower. Ann. Rev. Ecol. Syst. 7, 347–391 (1976)

    Article  Google Scholar 

  2. Nakashizuka, T.: Regeneration of beech (Fagus crenata) after the simultaneous death of undergrowing dwarf bamboo (Sasa kurilensis). Ecol. Res. 3, 21–35 (1988)

    Article  Google Scholar 

  3. Isagi, Y., Shimada, K., Kushima, H., Tanaka, N., Nagao, A., Ishikawa, T., Onodera, H., Watanabe, S.: Clonal structure and flowering traits of a bamboo [Phyllostachys pubescens (Mazel) Ohwi] stand grown from a simultaneous flowering as revealed by AFLP analysis. Mol. Ecol. 13, 2017–2021 (2004)

    Article  Google Scholar 

  4. Hisamoto, Y., Kobayashi, M.: Flowering habit of two bamboo species, Phyllostachys meyeri and Shibataea chinensis, analyzed with flowering gene expression. Plant Species Biol. 28, 109–117 (2013)

    Article  Google Scholar 

  5. Campbell, J.J.N.: Bamboo flowering patterns: a global view with special reference to East Asia. J. Am. Bamboo Soc. 6, 17–35 (1985)

    Google Scholar 

  6. Gadgil, M., Prasad, S.N.: Ecological determinants of life history evolution of two Indian bamboo species. Biotropica 16, 161–172 (1984)

    Article  Google Scholar 

  7. Keeley, J.E., Bond, W.J.: Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis. Am. Nat. 154, 383–391 (1999)

    Article  Google Scholar 

  8. Makita, A.: The significance of the mode of clonal growth in the life history of bamboos. Plant Species Biol. 13, 85–92 (1998)

    Article  Google Scholar 

  9. McClure, F.A.: The bamboos: a fresh perspective. Harvard University Press, Cambridge (1966)(Republished from Smithsonian Institution Press, Washington DC and London. 1993)

  10. Taihui, W.: Some ideas about the origin of bamboos. J. Bamboo Res. 2(1), 1–10 (1983)

    Google Scholar 

  11. Tachiki, Y., Makita, A., Suyama, Y., Satake, A.: A spatially explicit model for flowering time in bamboos: long rhizomes drive the evolution of delayed flowering. J. Ecol. 103, 585–593 (2015)

    Article  Google Scholar 

  12. Matsuda, H., Ogita, N., Sasaki, A., Satō, K.: Statistical mechanics of population the lattice lotka-volterra model. Prog. Theor. Phys. 88(6), 1035–1049 (1992)

    Article  Google Scholar 

  13. Harada, Y., Iwasa, Y.: Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36(2), 237–249 (1994)

    Article  Google Scholar 

  14. Satō, K., Matsuda, H., Sasaki, A.: Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32(3), 251–268 (1994)

    Article  MATH  Google Scholar 

  15. Harada, Y., Ezoe, H., Iwasa, Y., Matsuda, H., Sato, K.: Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48(1), 65–91 (1995)

    Article  MATH  Google Scholar 

  16. Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice-structured population. J. Theor. Biol. 184(1), 65–81 (1997)

    Article  Google Scholar 

  17. Satake, A., Bjørnstad, O.N.: Spatial dynamics of specialist seed predators on synchronized and intermittent seed production of host plants. Am. Nat. 163(4), 591–605 (2004)

    Article  Google Scholar 

  18. Maynard Smith, J., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  19. Fahrig, L., Coffin, D.P., Lauenroth, W.K., Shugart, H.H.: The advantage of long-distance clonal spreading in highly disturbed habitats. Evol. Ecol. 8, 172–187 (1994)

    Article  Google Scholar 

  20. Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998)

    Article  Google Scholar 

  21. Takenaka, Y., Matsuda, H., Iwasa, Y.: Competition and evolutionary stability of plants in a spatially structured habitat. Res. Popul. Ecol. 39(1), 67–75 (1997)

    Article  Google Scholar 

  22. Ikegami, M., Whigham, D.F., Werger, M.J.A.: Effects of local density of clonal plants on their sexual and vegetative propagation strategies in a lattice structure model. Ecol. Model. 234, 51–59 (2012)

    Article  Google Scholar 

  23. Takada, T., Nakajima, H.: The optimal allocation to seed reproduction and vegetative reproduction in perennial plants—an application of the density-dependent transition matrix model. J. Theor. Biol. 182, 179–191 (1996)

    Article  Google Scholar 

  24. Levin, S.A., Muller-Landau, H.C., Nathan, R., Chave, J.: The ecology and evolution of seed dispersal: a theoretical perspective. Ann. Rev. Ecol. Evol. Syst. 34, 575–604 (2003)

    Article  Google Scholar 

  25. Nathan, R.: Long-distance dispersal of plants. Science 313, 786–788 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for JSPS Fellows Number 2542 and JSPS KAKENHI [15H04518] to Y.T. We are grateful to Yuma Sakai, Kazunori Satō and Takenori Takada for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuya Tachiki.

Appendix: Derivation of population dynamics by using pair-approximation

Appendix: Derivation of population dynamics by using pair-approximation

By using the definition of local density, Eq. 1 in the main text is written as follows:

$$\begin{aligned} {p}'_\mathrm{r} =\left\{ \begin{array}{ll} f_\mathrm{c} \left( {p_\mathrm{r} ,q_{r/r} } \right) = \left( {1-\delta } \right) p_\mathrm{r} +\delta p_{\mathrm{r,}} \left( 1-\exp \left[ -\alpha \left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} \right] \right) \\ \qquad \qquad \qquad \quad \quad +\left( {1-p_\mathrm{r} } \right) \left( 1-\exp \left[ {-\alpha \left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] \right) &{}\quad {\hbox {if }t\hbox { mod } \tau _\mathrm{r} \ne \hbox {0}} \\ \qquad \qquad \qquad \quad \quad \left( {1-\delta } \right) p_\mathrm{r} \left( {1-\exp \left[ {-\beta \left( {\frac{4}{5}\left( {1-\delta } \right) q_{r/r} +\frac{1}{5}} \right) } \right] } \right) \\ f_\mathrm{s} \left( {p_\mathrm{r} ,q_{r/r} } \right) = +\delta p_\mathrm{r} \left( 1-\exp \left[ {-\frac{4}{5}\beta \left( {1-\delta } \right) q_{r/r} } \right] \right) &{}\quad {\hbox {otherwise}} \\ \qquad \qquad \qquad \quad \quad +\left( {1-p_\mathrm{r} } \right) \left( 1-\exp \left[ {-\frac{4}{5}\beta \left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] \right) \end{array}\right. \end{aligned}$$
(36)

Note that we abbreviate the time t from the equation, because the time of every variable \((p_\mathrm{r} ,q_{\mathrm{r}/\mathrm{r}} )\) in the right-hand side of equality is always \(t. {p}'_\mathrm{r}\) means the global density in year \(t+1, p_{\mathrm{r,}t+1} \). We need to derive the dynamics of pair density for both clonal and sexual reproduction. When individuals undergo clonal reproduction \((\hbox {if }t\hbox { mod } \tau _\mathrm{r} \ne \hbox {0})\), the doublet density in the next year \(({p}'_{\mathrm{rr}} =p_{\mathrm{rr,}t+1} )\) is written as follows;

$$\begin{aligned} {p}'_{\mathrm{rr}}= & {} p_{00} \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/00} } \right] } \right) ^{2} \nonumber \\&+\,2\delta p_{0\hbox {r}} \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/0\hbox {r}} } \right] } \right) \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r0}} } \right] } \right) \nonumber \\&+\,2\left( {1-\delta } \right) p_{0\hbox {r}} \left( {1-\exp \left[ {-\alpha \left( {\frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/0\hbox {r}} +\frac{1}{4}} \right) } \right] } \right) \nonumber \\&+\,\delta ^{2}p_{\mathrm{rr}} \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{rr}} } \right] } \right) ^{2} \nonumber \\&+\,2\delta \left( {1-\delta } \right) p_{\mathrm{rr}} \left( {1-\exp \left[ {-\alpha \left( {\frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{rr}} +\frac{1}{4}} \right) } \right] } \right) \nonumber \\&+\,\left( {1-\delta } \right) ^{2}p_{\mathrm{rr}}. \end{aligned}$$
(37)

where \(q_{\sigma _0 /\sigma _1 \sigma _2 } \{\sigma _0 ,\sigma _1 ,\sigma _2 =0\hbox { or r}\}\) is the conditional probability that the randomly chosen n.n. site of \(\sigma _1 \) site is \(\sigma _0 \) site, provided that another randomly chosen n.n. site of \(\sigma _1 \)site is \(\sigma _2 \) site. We should proceed further to calculate the dynamics of theses conditional probabilities of a higher order by tracing the dynamics of triplet probabilities, but the dynamics would contain conditional probabilities of higher orders. Hence we adopt pair approximation to construct a closed dynamics of singlet and doublet densities by neglecting correlations beyond pairs (Matsuda et al. [12]; Harada and Iwasa [13]):

$$\begin{aligned} q_{\sigma _0 /\sigma _1 \sigma _2 } \cong q_{\sigma _0 /\sigma _1 }\quad \forall \sigma _0 ,\sigma _1 ,\sigma _2 \hbox { in }\left\{ {0,\hbox {r}} \right\} . \end{aligned}$$
(38)

Using pair approximation and the definition of conditional probability, Eq. 36 becomes:

$$\begin{aligned} {p}'_\mathrm{r} {q}'_{\mathrm{r}/\mathrm{r}}= & {} g_\mathrm{c} \left( {p_\mathrm{r} ,q_{\mathrm{r}/\mathrm{r}} } \right) =\left( {1-2p_\mathrm{r} +p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} } \right) \nonumber \\&\times \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] } \right) ^{2}\nonumber \\&+\,2\delta p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] } \right) \nonumber \\&\times \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} } \right] } \right) \nonumber \\&+\,2\left( {1-\delta } \right) p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) \left( {1-\exp \left[ {-\alpha \left( {\frac{3}{4}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }+\frac{1}{4}} \right) } \right] } \right) \nonumber \\&+\,\delta ^{2}p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \left( {1-\exp \left[ {-\alpha \frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} } \right] } \right) ^{2}\nonumber \\&+\,2\delta \left( {1-\delta } \right) p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \left( {1-\exp \left[ {-\alpha \left( {\frac{3}{4}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} +\frac{1}{4}} \right) } \right] } \right) \nonumber \\&+\,\left( {1-\delta } \right) ^{2}p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \end{aligned}$$
(39)

The top of Eqs. 36 and 39 constitute a closed dynamical system of two variables, \(p_\mathrm{r} \) and \(q_{\mathrm{r}/\mathrm{r}} \).

When we apply the same method to the case of sexual reproduction, we get the dynamics of local density as follows:

$$\begin{aligned} {p}'_{\mathrm{rr}}= & {} {p}'_\mathrm{r} {q}'_{\mathrm{r}/\mathrm{r}} =g_\mathrm{s} \left( {p_\mathrm{r} ,q_{\mathrm{r}/\mathrm{r}} } \right) =\left( {1-2p_\mathrm{r} +p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} } \right) \nonumber \\&\times \left( {1-\exp \left[ {-\beta \frac{3}{5}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] } \right) ^{2} \nonumber \\&+\,2\delta p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) \left( {1-\exp \left[ {-\beta \frac{3}{5}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }} \right] } \right) \nonumber \\&\times \left( {1-\exp \left[ {-\beta \frac{3}{5}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} } \right] } \right) \nonumber \\&+\,2\left( {1-\delta } \right) p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) \left( {1-\exp \left[ {-\beta \left( {\frac{3}{5}\left( {1-\delta } \right) \frac{p_\mathrm{r} \left( {1-q_{\mathrm{r}/\mathrm{r}} } \right) }{1-p_\mathrm{r} }+\frac{1}{5}} \right) } \right] } \right) \nonumber \\&\times \left( {1-\exp \left[ {-\beta \left( {\frac{3}{5}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} +\frac{1}{5}} \right) } \right] } \right) \nonumber \\&+\,\delta ^{2}p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \left( {1-\exp \left[ {-\beta \frac{3}{5}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} } \right] } \right) ^{2} \nonumber \\&+\,2\delta \left( {1-\delta } \right) p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \left( {1-\exp \left[ {-\beta \left( {\frac{3}{5}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} +\frac{1}{5}} \right) } \right] } \right) ^{2} \nonumber \\&+\,\left( {1-\delta } \right) ^{2}p_\mathrm{r} q_{\mathrm{r}/\mathrm{r}} \left( {1-\exp \left[ {-\beta \left( {\frac{3}{5}\left( {1-\delta } \right) q_{\mathrm{r}/\mathrm{r}} +\frac{2}{5}} \right) } \right] } \right) ^{2} \end{aligned}$$
(40)

The bottom of Eqs. 36 and 39 also constitute a closed dynamical system of two variables. Hence the population dynamics of bamboo can be expressed as follows:

$$\begin{aligned} {p}'_\mathrm{r}= & {} \left\{ {{\begin{array}{ll} {f_\mathrm{c} \left( {p_\mathrm{r} ,q_{r/r} } \right) }&{}\quad {\hbox {if }t\hbox { mod } \tau _\mathrm{r} \ne \hbox {0}} \\ {f_\mathrm{s} \left( {p_\mathrm{r} ,q_{r/r} } \right) }&{}\quad {\hbox {otherwise}} \\ \end{array} }} \right. \end{aligned}$$
(41)
$$\begin{aligned} {q}'_{\mathrm{r}/\mathrm{r}}= & {} \left\{ {{\begin{array}{ll} {{g_\mathrm{c} \left( {p_\mathrm{r} ,q_{r/r} } \right) }/{f_\mathrm{c} \left( {p_\mathrm{r} ,q_{r/r} } \right) }}&{}\quad {\hbox {if }t\hbox { mod } \tau _\mathrm{r} \ne \hbox {0}} \\ {{g_\mathrm{s} \left( {p_\mathrm{r} ,q_{r/r} } \right) }/{f_\mathrm{s} \left( {p_\mathrm{r} ,q_{r/r} } \right) }}&{}\quad {\hbox {otherwise}} \\ \end{array} }} \right. \end{aligned}$$
(42)

Hence we can apply standard analysis to a pair of non-linear difference equation.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachiki, Y., Satake, A. Pair-approximation analyses of evolutionarily stable strategies for flowering time in clonal monocarpic plants. Japan J. Indust. Appl. Math. 32, 615–639 (2015). https://doi.org/10.1007/s13160-015-0194-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0194-4

Keywords

Mathematics Subject Classification

Navigation