Skip to main content
Log in

Pathogen invasion and host extinction in lattice structured populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We examined the propagation of an infectious disease and the eventual extinction of the host population in a lattice-structured population. Both the host colonization and pathogen transmission processes are assumed to be restricted to act between the nearest neighbor sites. The model is analyzed by an improved version of pair approximation (IPA). Pair approximation is a technique to trace the dynamics of the number of nearest neighbor pairs having particular states, and IPA takes account of the clustering property of lattice models more precisely. The results are checked by computer simulations. The analysis shows: (i) in a one-dimensional lattice population, a pathogen cannot invade a host population no matter how large is the transmission rate; (ii) in a two-dimensional lattice population, pathogens will drive the host to extinction if the transmission rate is larger than a threshold. These results indicate that spatially structured population models may give qualitatively different results from conventional population models, such as Lotka-Volterra ones, without spatial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brower, R. C., Furman, M. A., Moshe, M.: Critical exponents for the Reggeon quantum spin model. Phys. Lett. 76B, 213–219 (1978)

    Google Scholar 

  • Comins, H. N., Blatt, D. W. E.: Prey-predator models in spatially heterogeneous environments. J. Theor. Biol. 48, 75–83 (1974)

    Google Scholar 

  • De Roos, A. M., McCauley, E., Wilson, W. G.: Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond., Ser. B 246, 117–122 (1991)

    Google Scholar 

  • Dickman, R.: Kinetic phase transitions in a surface-reaction model: mean-field theory. Phys. Rev. A 34, 4246–4250, (1986)

    Google Scholar 

  • Durrett, R.: Lecture notes on particle systems and percolation. California: Wadsworth & Brooks/Cole 1988

    Google Scholar 

  • Durrett, R., Neuhauser, C.: Epidemics with recovery in D=2. Ann. Appl. Probab. 1, 189–206 (1991)

    Google Scholar 

  • Durrett, R., Swindle, G.: Are there bushes in a forest? Stoch. Proc. Appl. 37, 19–31 (1991)

    Google Scholar 

  • Grassberger, P., De La Torre, A.: Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)

    Google Scholar 

  • Green, D. G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetatio 82, 139–153 (1989)

    Google Scholar 

  • Hamilton, W. D.: Sex versus non-sex versus parasite. Oikos 35, 282–290 (1980)

    Google Scholar 

  • Hamilton, W. D., Axelrod, R., Tanase, R.: Sexual reproduction as an adaptation to resist parasites. Proc. Natl. Acad. Sci. USA 87, 3566–3573 (1990)

    Google Scholar 

  • Harris, T. E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)

    Google Scholar 

  • Hassell, M. P., Comins, H. N., May, R. M.: Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991)

    Google Scholar 

  • Iwasa, Y., Satō, K., Nakashima, S.: Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol. 152, 143–158 (1991)

    Google Scholar 

  • Iwasa, Y., Satō, K., Kakita, M., Kubo, T.: Modelling biodiversity: Latitudinal gradient of forest species diversity. In: Schulze, E.-D., Mooney, H. (eds.) Biodiversity and ecosystem function. Berlin Heidelberg New York: Springer 1993

    Google Scholar 

  • Katori, M., Konno, N.: Correlation inequalities and lower bounds for the critical value γ c of contact processes. J. Phys. Soc. Jpn. 59, 877–887 (1990)

    Google Scholar 

  • Katori, M., Konno, N.: Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115–130 (1991)

    Google Scholar 

  • Kawano, K., Iwasa, Y.: A lattice structured model for beech forest dynamics: the effect of understory dwarf bamboo. Ecol. Modelling 66, 261–275 (1993)

    Google Scholar 

  • Konno, N., Katori, M.: Applications of the CAM based on a new decoupling procedure of correlation functions in the one-dimensional contact process. J. Phys. Soc. Jpn. 59, 1581–1592 (1990)

    Google Scholar 

  • Liggett, T. M.: Interacting particle systems. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  • Ludwig, D., Aronson, D. G., Weinberger, H. F.: Spatial patterning of the spruce budworm. J. Math. Biol. 8, 217–258 (1979)

    Google Scholar 

  • Matsuda, H.: Conditions for the evolution of altruism. In: Itô, Y., Brown, J. L., Kikkawa, J. (eds.) Animal societies: Theories and facts, pp. 67–80. Tokyo: Japan Sci. Soc. Press 1987

    Google Scholar 

  • Matsuda, H., Tamachi, N., Sasaki, A., Ogita, N.: A lattice model for population biology. In: Teramoto, E., Yamaguti, M. (eds.) Mathematical topics in population biology, morphogenesis, and neurosciences. (Lect. Notes Biomath., Vol. 71, pp. 154–161) Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  • Matsuda, H., Ogita, N., Sasaki, A., Satō, K.: Statistical mechanics of population: The lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049 (1992)

    Google Scholar 

  • May, R. M., Anderson, R. M.: Population biology of infectious diseases: Part II. Nature 280, 455–461 (1979)

    Google Scholar 

  • May, R. M., Anderson, R. M.: Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond., Ser. B 219, 281–313 (1983)

    Google Scholar 

  • May, R. M., Anderson, R. M.: Transmission dynamics of HIV infection. Nature 326, 137–142 (1987)

    Google Scholar 

  • Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc., Ser. B 39, 283–326 (1977)

    Google Scholar 

  • Mollison, D., Kuulasmaa, K.: Spatial epidemic models: theory and simulations. In: Bacon, P. J. (ed.) Population dynamics of rabies in wildlife, pp. 291–309. London: Academic Press 1985

    Google Scholar 

  • Nowak, M. A., May, R. M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Google Scholar 

  • Ootsuki, T., Keyes, T.: Kinetic growth percolation: Epidemic processes with immunization. Phys. Rev. A 33, 1223–1232 (1986)

    Google Scholar 

  • Satō, K., Iwasa, Y.: Modeling of wave regeneration (Shimagare) in subalpine Abies forests: Population dynamics with spatial structure. Ecology 74, 1538–1550 (1993)

    Google Scholar 

  • Tainaka, K.: Lattice model for the Lotka-Volterra system. J. Phys. Soc. Jpn. 57, 2588–2590 (1988)

    Google Scholar 

  • Yachi, S., Kawasaki, K., Shigesada, N. Teramoto, E.: Spatial patterns of propagating waves of fox rabies. Forma 4, 3–12 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satō, K., Matsuda, H. & Sasaki, A. Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251–268 (1994). https://doi.org/10.1007/BF00163881

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163881

Key words

Navigation